pandas.read_json
-
pandas.read_json(path_or_buf=None, orient=None, typ='frame', dtype=True, convert_axes=True, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, lines=False, chunksize=None, compression='infer')
[source] -
Convert a JSON string to pandas object.
Parameters: -
path_or_buf : a valid JSON string or file-like, default: None
-
The string could be a URL. Valid URL schemes include http, ftp, s3, gcs, and file. For file URLs, a host is expected. For instance, a local file could be
file://localhost/path/to/table.json
-
orient : string,
-
Indication of expected JSON string format. Compatible JSON strings can be produced by
to_json()
with a corresponding orient value. The set of possible orients is:-
'split'
: dict like{index -> [index], columns -> [columns], data -> [values]}
-
'records'
: list like[{column -> value}, ... , {column -> value}]
-
'index'
: dict like{index -> {column -> value}}
-
'columns'
: dict like{column -> {index -> value}}
-
'values'
: just the values array
The allowed and default values depend on the value of the
typ
parameter.- when
typ == 'series'
,- allowed orients are
{'split','records','index'}
- default is
'index'
- The Series index must be unique for orient
'index'
.
- allowed orients are
- when
typ == 'frame'
,- allowed orients are
{'split','records','index', 'columns','values', 'table'}
- default is
'columns'
- The DataFrame index must be unique for orients
'index'
and'columns'
. - The DataFrame columns must be unique for orients
'index'
,'columns'
, and'records'
.
- allowed orients are
New in version 0.23.0: ‘table’ as an allowed value for the
orient
argument -
-
typ : type of object to recover (series or frame), default ‘frame’
-
dtype : boolean or dict, default True
-
If True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t infer dtypes at all, applies only to the data.
-
convert_axes : boolean, default True
-
Try to convert the axes to the proper dtypes.
-
convert_dates : boolean, default True
-
List of columns to parse for dates; If True, then try to parse datelike columns default is True; a column label is datelike if
- it ends with
'_at'
, - it ends with
'_time'
, - it begins with
'timestamp'
, - it is
'modified'
, or - it is
'date'
- it ends with
-
keep_default_dates : boolean, default True
-
If parsing dates, then parse the default datelike columns
-
numpy : boolean, default False
-
Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True.
-
precise_float : boolean, default False
-
Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality
-
date_unit : string, default None
-
The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’ to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively.
-
encoding : str, default is ‘utf-8’
-
The encoding to use to decode py3 bytes.
New in version 0.19.0.
-
lines : boolean, default False
-
Read the file as a json object per line.
New in version 0.19.0.
-
chunksize : integer, default None
-
Return JsonReader object for iteration. See the line-delimted json docs for more information on
chunksize
. This can only be passed iflines=True
. If this is None, the file will be read into memory all at once.New in version 0.21.0.
-
compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’
-
For on-the-fly decompression of on-disk data. If ‘infer’, then use gzip, bz2, zip or xz if path_or_buf is a string ending in ‘.gz’, ‘.bz2’, ‘.zip’, or ‘xz’, respectively, and no decompression otherwise. If using ‘zip’, the ZIP file must contain only one data file to be read in. Set to None for no decompression.
New in version 0.21.0.
Returns: -
result : Series or DataFrame, depending on the value of typ.
See also
Notes
Specific to
orient='table'
, if aDataFrame
with a literalIndex
name ofindex
gets written withto_json()
, the subsequent read operation will incorrectly set theIndex
name toNone
. This is becauseindex
is also used byDataFrame.to_json()
to denote a missingIndex
name, and the subsequentread_json()
operation cannot distinguish between the two. The same limitation is encountered with aMultiIndex
and any names beginning with'level_'
.Examples
>>> df = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2'])
Encoding/decoding a Dataframe using
'split'
formatted JSON:>>> df.to_json(orient='split') '{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}' >>> pd.read_json(_, orient='split') col 1 col 2 row 1 a b row 2 c d
Encoding/decoding a Dataframe using
'index'
formatted JSON:>>> df.to_json(orient='index') '{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}' >>> pd.read_json(_, orient='index') col 1 col 2 row 1 a b row 2 c d
Encoding/decoding a Dataframe using
'records'
formatted JSON. Note that index labels are not preserved with this encoding.>>> df.to_json(orient='records') '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' >>> pd.read_json(_, orient='records') col 1 col 2 0 a b 1 c d
Encoding with Table Schema
>>> df.to_json(orient='table') '{"schema": {"fields": [{"name": "index", "type": "string"}, {"name": "col 1", "type": "string"}, {"name": "col 2", "type": "string"}], "primaryKey": "index", "pandas_version": "0.20.0"}, "data": [{"index": "row 1", "col 1": "a", "col 2": "b"}, {"index": "row 2", "col 1": "c", "col 2": "d"}]}'
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.read_json.html