pandas.Series.from_csv
- 
classmethod Series.from_csv(path, sep=', ', parse_dates=True, header=None, index_col=0, encoding=None, infer_datetime_format=False)[source] - 
Read CSV file.
Deprecated since version 0.21.0: Use
pandas.read_csv()instead.It is preferable to use the more powerful
pandas.read_csv()for most general purposes, butfrom_csvmakes for an easy roundtrip to and from a file (the exact counterpart ofto_csv), especially with a time Series.This method only differs from
pandas.read_csv()in some defaults:- 
index_colis0instead ofNone(take first column as index by default) - 
headerisNoneinstead of0(the first row is not used as the column names) - 
parse_datesisTrueinstead ofFalse(try parsing the index as datetime by default) 
With
pandas.read_csv(), the optionsqueeze=Truecan be used to return a Series likefrom_csv.Parameters: - 
path : string file path or file handle / StringIO - 
sep : string, default ‘,’ - 
Field delimiter
 - 
parse_dates : boolean, default True - 
Parse dates. Different default from read_table
 - 
header : int, default None - 
Row to use as header (skip prior rows)
 - 
index_col : int or sequence, default 0 - 
Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table
 - 
encoding : string, optional - 
a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3
 - 
infer_datetime_format : boolean, default False - 
If True and
parse_datesis True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up. 
Returns: - 
y : Series 
See also
 - 
 
    © 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
    https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.Series.from_csv.html