pandas.Series.aggregate
-
Series.aggregate(func, axis=0, *args, **kwargs)
[source] -
Aggregate using one or more operations over the specified axis.
New in version 0.20.0.
Parameters: -
func : function, str, list or dict
-
Function to use for aggregating the data. If a function, must either work when passed a Series or when passed to Series.apply.
Accepted combinations are:
- function
- string function name
- list of functions and/or function names, e.g.
[np.sum, 'mean']
- dict of axis labels -> functions, function names or list of such.
-
axis : {0 or ‘index’}
-
Parameter needed for compatibility with DataFrame.
- *args
-
Positional arguments to pass to
func
. - **kwargs
-
Keyword arguments to pass to
func
.
Returns: - DataFrame, Series or scalar
-
if DataFrame.agg is called with a single function, returns a Series if DataFrame.agg is called with several functions, returns a DataFrame if Series.agg is called with single function, returns a scalar if Series.agg is called with several functions, returns a Series
See also
-
Series.apply
- Invoke function on a Series.
-
Series.transform
- Transform function producing a Series with like indexes.
Notes
agg
is an alias foraggregate
. Use the alias.A passed user-defined-function will be passed a Series for evaluation.
Examples
>>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64
>>> s.agg('min') 1
>>> s.agg(['min', 'max']) min 1 max 4 dtype: int64
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.Series.aggregate.html