pandas.api.types.is_integer_dtype
-
pandas.api.types.is_integer_dtype(arr_or_dtype)
[source] -
Check whether the provided array or dtype is of an integer dtype.
Unlike in
in_any_int_dtype
, timedelta64 instances will return False.Changed in version 0.24.0: The nullable Integer dtypes (e.g. pandas.Int64Dtype) are also considered as integer by this function.
Parameters: -
arr_or_dtype : array-like
-
The array or dtype to check.
Returns: -
boolean : Whether or not the array or dtype is of an integer dtype
-
and not an instance of timedelta64.
Examples
>>> is_integer_dtype(str) False >>> is_integer_dtype(int) True >>> is_integer_dtype(float) False >>> is_integer_dtype(np.uint64) True >>> is_integer_dtype('int8') True >>> is_integer_dtype('Int8') True >>> is_integer_dtype(pd.Int8Dtype) True >>> is_integer_dtype(np.datetime64) False >>> is_integer_dtype(np.timedelta64) False >>> is_integer_dtype(np.array(['a', 'b'])) False >>> is_integer_dtype(pd.Series([1, 2])) True >>> is_integer_dtype(np.array([], dtype=np.timedelta64)) False >>> is_integer_dtype(pd.Index([1, 2.])) # float False
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.api.types.is_integer_dtype.html