pandas.interval_range
-
pandas.interval_range(start=None, end=None, periods=None, freq=None, name=None, closed='right')[source] -
Return a fixed frequency IntervalIndex
Parameters: -
start : numeric or datetime-like, default None -
Left bound for generating intervals
-
end : numeric or datetime-like, default None -
Right bound for generating intervals
-
periods : integer, default None -
Number of periods to generate
-
freq : numeric, string, or DateOffset, default None -
The length of each interval. Must be consistent with the type of start and end, e.g. 2 for numeric, or ‘5H’ for datetime-like. Default is 1 for numeric and ‘D’ for datetime-like.
-
name : string, default None -
Name of the resulting IntervalIndex
-
closed : {‘left’, ‘right’, ‘both’, ‘neither’}, default ‘right’ -
Whether the intervals are closed on the left-side, right-side, both or neither.
Returns: -
rng : IntervalIndex
See also
-
IntervalIndex - An Index of intervals that are all closed on the same side.
Notes
Of the four parameters
start,end,periods, andfreq, exactly three must be specified. Iffreqis omitted, the resultingIntervalIndexwill haveperiodslinearly spaced elements betweenstartandend, inclusively.To learn more about datetime-like frequency strings, please see this link.
Examples
Numeric
startandendis supported.>>> pd.interval_range(start=0, end=5) IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]], closed='right', dtype='interval[int64]')Additionally, datetime-like input is also supported.
>>> pd.interval_range(start=pd.Timestamp('2017-01-01'), ... end=pd.Timestamp('2017-01-04')) IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03], (2017-01-03, 2017-01-04]], closed='right', dtype='interval[datetime64[ns]]')The
freqparameter specifies the frequency between the left and right. endpoints of the individual intervals within theIntervalIndex. For numericstartandend, the frequency must also be numeric.>>> pd.interval_range(start=0, periods=4, freq=1.5) IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], closed='right', dtype='interval[float64]')Similarly, for datetime-like
startandend, the frequency must be convertible to a DateOffset.>>> pd.interval_range(start=pd.Timestamp('2017-01-01'), ... periods=3, freq='MS') IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01], (2017-03-01, 2017-04-01]], closed='right', dtype='interval[datetime64[ns]]')Specify
start,end, andperiods; the frequency is generated automatically (linearly spaced).>>> pd.interval_range(start=0, end=6, periods=4) IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], closed='right', dtype='interval[float64]')The
closedparameter specifies which endpoints of the individual intervals within theIntervalIndexare closed.>>> pd.interval_range(end=5, periods=4, closed='both') IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]], closed='both', dtype='interval[int64]') -
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.interval_range.html