Series.add (other[, level, fill_value, axis]) | Addition of series and other, element-wise (binary operator add ). |
Series.sub (other[, level, fill_value, axis]) | Subtraction of series and other, element-wise (binary operator sub ). |
Series.mul (other[, level, fill_value, axis]) | Multiplication of series and other, element-wise (binary operator mul ). |
Series.div (other[, level, fill_value, axis]) | Floating division of series and other, element-wise (binary operator truediv ). |
Series.truediv (other[, level, fill_value, axis]) | Floating division of series and other, element-wise (binary operator truediv ). |
Series.floordiv (other[, level, fill_value, axis]) | Integer division of series and other, element-wise (binary operator floordiv ). |
Series.mod (other[, level, fill_value, axis]) | Modulo of series and other, element-wise (binary operator mod ). |
Series.pow (other[, level, fill_value, axis]) | Exponential power of series and other, element-wise (binary operator pow ). |
Series.radd (other[, level, fill_value, axis]) | Addition of series and other, element-wise (binary operator radd ). |
Series.rsub (other[, level, fill_value, axis]) | Subtraction of series and other, element-wise (binary operator rsub ). |
Series.rmul (other[, level, fill_value, axis]) | Multiplication of series and other, element-wise (binary operator rmul ). |
Series.rdiv (other[, level, fill_value, axis]) | Floating division of series and other, element-wise (binary operator rtruediv ). |
Series.rtruediv (other[, level, fill_value, axis]) | Floating division of series and other, element-wise (binary operator rtruediv ). |
Series.rfloordiv (other[, level, fill_value, …]) | Integer division of series and other, element-wise (binary operator rfloordiv ). |
Series.rmod (other[, level, fill_value, axis]) | Modulo of series and other, element-wise (binary operator rmod ). |
Series.rpow (other[, level, fill_value, axis]) | Exponential power of series and other, element-wise (binary operator rpow ). |
Series.combine (other, func[, fill_value]) | Combine the Series with a Series or scalar according to func . |
Series.combine_first (other) | Combine Series values, choosing the calling Series’s values first. |
Series.round ([decimals]) | Round each value in a Series to the given number of decimals. |
Series.lt (other[, level, fill_value, axis]) | Less than of series and other, element-wise (binary operator lt ). |
Series.gt (other[, level, fill_value, axis]) | Greater than of series and other, element-wise (binary operator gt ). |
Series.le (other[, level, fill_value, axis]) | Less than or equal to of series and other, element-wise (binary operator le ). |
Series.ge (other[, level, fill_value, axis]) | Greater than or equal to of series and other, element-wise (binary operator ge ). |
Series.ne (other[, level, fill_value, axis]) | Not equal to of series and other, element-wise (binary operator ne ). |
Series.eq (other[, level, fill_value, axis]) | Equal to of series and other, element-wise (binary operator eq ). |
Series.product ([axis, skipna, level, …]) | Return the product of the values for the requested axis. |
Series.dot (other) | Compute the dot product between the Series and the columns of other. |
Series.apply (func[, convert_dtype, args]) | Invoke function on values of Series. |
Series.agg (func[, axis]) | Aggregate using one or more operations over the specified axis. |
Series.aggregate (func[, axis]) | Aggregate using one or more operations over the specified axis. |
Series.transform (func[, axis]) | Call func on self producing a Series with transformed values and that has the same axis length as self. |
Series.map (arg[, na_action]) | Map values of Series according to input correspondence. |
Series.groupby ([by, axis, level, as_index, …]) | Group DataFrame or Series using a mapper or by a Series of columns. |
Series.rolling (window[, min_periods, …]) | Provides rolling window calculations. |
Series.expanding ([min_periods, center, axis]) | Provides expanding transformations. |
Series.ewm ([com, span, halflife, alpha, …]) | Provides exponential weighted functions. |
Series.pipe (func, *args, **kwargs) | Apply func(self, *args, **kwargs). |
Series.abs () | Return a Series/DataFrame with absolute numeric value of each element. |
Series.all ([axis, bool_only, skipna, level]) | Return whether all elements are True, potentially over an axis. |
Series.any ([axis, bool_only, skipna, level]) | Return whether any element is True, potentially over an axis. |
Series.autocorr ([lag]) | Compute the lag-N autocorrelation. |
Series.between (left, right[, inclusive]) | Return boolean Series equivalent to left <= series <= right. |
Series.clip ([lower, upper, axis, inplace]) | Trim values at input threshold(s). |
Series.clip_lower (threshold[, axis, inplace]) | (DEPRECATED) Trim values below a given threshold. |
Series.clip_upper (threshold[, axis, inplace]) | (DEPRECATED) Trim values above a given threshold. |
Series.corr (other[, method, min_periods]) | Compute correlation with other Series, excluding missing values. |
Series.count ([level]) | Return number of non-NA/null observations in the Series. |
Series.cov (other[, min_periods]) | Compute covariance with Series, excluding missing values. |
Series.cummax ([axis, skipna]) | Return cumulative maximum over a DataFrame or Series axis. |
Series.cummin ([axis, skipna]) | Return cumulative minimum over a DataFrame or Series axis. |
Series.cumprod ([axis, skipna]) | Return cumulative product over a DataFrame or Series axis. |
Series.cumsum ([axis, skipna]) | Return cumulative sum over a DataFrame or Series axis. |
Series.describe ([percentiles, include, exclude]) | Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values. |
Series.diff ([periods]) | First discrete difference of element. |
Series.factorize ([sort, na_sentinel]) | Encode the object as an enumerated type or categorical variable. |
Series.kurt ([axis, skipna, level, numeric_only]) | Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). |
Series.mad ([axis, skipna, level]) | Return the mean absolute deviation of the values for the requested axis. |
Series.max ([axis, skipna, level, numeric_only]) | Return the maximum of the values for the requested axis. |
Series.mean ([axis, skipna, level, numeric_only]) | Return the mean of the values for the requested axis. |
Series.median ([axis, skipna, level, …]) | Return the median of the values for the requested axis. |
Series.min ([axis, skipna, level, numeric_only]) | Return the minimum of the values for the requested axis. |
Series.mode ([dropna]) | Return the mode(s) of the dataset. |
Series.nlargest ([n, keep]) | Return the largest n elements. |
Series.nsmallest ([n, keep]) | Return the smallest n elements. |
Series.pct_change ([periods, fill_method, …]) | Percentage change between the current and a prior element. |
Series.prod ([axis, skipna, level, …]) | Return the product of the values for the requested axis. |
Series.quantile ([q, interpolation]) | Return value at the given quantile. |
Series.rank ([axis, method, numeric_only, …]) | Compute numerical data ranks (1 through n) along axis. |
Series.sem ([axis, skipna, level, ddof, …]) | Return unbiased standard error of the mean over requested axis. |
Series.skew ([axis, skipna, level, numeric_only]) | Return unbiased skew over requested axis Normalized by N-1. |
Series.std ([axis, skipna, level, ddof, …]) | Return sample standard deviation over requested axis. |
Series.sum ([axis, skipna, level, …]) | Return the sum of the values for the requested axis. |
Series.var ([axis, skipna, level, ddof, …]) | Return unbiased variance over requested axis. |
Series.kurtosis ([axis, skipna, level, …]) | Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). |
Series.unique () | Return unique values of Series object. |
Series.nunique ([dropna]) | Return number of unique elements in the object. |
Series.is_unique | Return boolean if values in the object are unique. |
Series.is_monotonic | Return boolean if values in the object are monotonic_increasing. |
Series.is_monotonic_increasing | Return boolean if values in the object are monotonic_increasing. |
Series.is_monotonic_decreasing | Return boolean if values in the object are monotonic_decreasing. |
Series.value_counts ([normalize, sort, …]) | Return a Series containing counts of unique values. |
Series.compound ([axis, skipna, level]) | Return the compound percentage of the values for the requested axis. |
Series.align (other[, join, axis, level, …]) | Align two objects on their axes with the specified join method for each axis Index. |
Series.drop ([labels, axis, index, columns, …]) | Return Series with specified index labels removed. |
Series.droplevel (level[, axis]) | Return DataFrame with requested index / column level(s) removed. |
Series.drop_duplicates ([keep, inplace]) | Return Series with duplicate values removed. |
Series.duplicated ([keep]) | Indicate duplicate Series values. |
Series.equals (other) | Test whether two objects contain the same elements. |
Series.first (offset) | Convenience method for subsetting initial periods of time series data based on a date offset. |
Series.head ([n]) | Return the first n rows. |
Series.idxmax ([axis, skipna]) | Return the row label of the maximum value. |
Series.idxmin ([axis, skipna]) | Return the row label of the minimum value. |
Series.isin (values) | Check whether values are contained in Series. |
Series.last (offset) | Convenience method for subsetting final periods of time series data based on a date offset. |
Series.reindex ([index]) | Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. |
Series.reindex_like (other[, method, copy, …]) | Return an object with matching indices as other object. |
Series.rename ([index]) | Alter Series index labels or name. |
Series.rename_axis ([mapper, index, columns, …]) | Set the name of the axis for the index or columns. |
Series.reset_index ([level, drop, name, inplace]) | Generate a new DataFrame or Series with the index reset. |
Series.sample ([n, frac, replace, weights, …]) | Return a random sample of items from an axis of object. |
Series.select (crit[, axis]) | (DEPRECATED) Return data corresponding to axis labels matching criteria. |
Series.set_axis (labels[, axis, inplace]) | Assign desired index to given axis. |
Series.take (indices[, axis, convert, is_copy]) | Return the elements in the given positional indices along an axis. |
Series.tail ([n]) | Return the last n rows. |
Series.truncate ([before, after, axis, copy]) | Truncate a Series or DataFrame before and after some index value. |
Series.where (cond[, other, inplace, axis, …]) | Replace values where the condition is False. |
Series.mask (cond[, other, inplace, axis, …]) | Replace values where the condition is True. |
Series.add_prefix (prefix) | Prefix labels with string prefix . |
Series.add_suffix (suffix) | Suffix labels with string suffix . |
Series.filter ([items, like, regex, axis]) | Subset rows or columns of dataframe according to labels in the specified index. |
Series.argsort ([axis, kind, order]) | Overrides ndarray.argsort. |
Series.argmin ([axis, skipna]) | (DEPRECATED) Return the row label of the minimum value. |
Series.argmax ([axis, skipna]) | (DEPRECATED) Return the row label of the maximum value. |
Series.reorder_levels (order) | Rearrange index levels using input order. |
Series.sort_values ([axis, ascending, …]) | Sort by the values. |
Series.sort_index ([axis, level, ascending, …]) | Sort Series by index labels. |
Series.swaplevel ([i, j, copy]) | Swap levels i and j in a MultiIndex. |
Series.unstack ([level, fill_value]) | Unstack, a.k.a. |
Series.searchsorted (value[, side, sorter]) | Find indices where elements should be inserted to maintain order. |
Series.ravel ([order]) | Return the flattened underlying data as an ndarray. |
Series.repeat (repeats[, axis]) | Repeat elements of a Series. |
Series.squeeze ([axis]) | Squeeze 1 dimensional axis objects into scalars. |
Series.view ([dtype]) | Create a new view of the Series. |
Series.asfreq (freq[, method, how, …]) | Convert TimeSeries to specified frequency. |
Series.asof (where[, subset]) | Return the last row(s) without any NaNs before where . |
Series.shift ([periods, freq, axis, fill_value]) | Shift index by desired number of periods with an optional time freq . |
Series.first_valid_index () | Return index for first non-NA/null value. |
Series.last_valid_index () | Return index for last non-NA/null value. |
Series.resample (rule[, how, axis, …]) | Resample time-series data. |
Series.tz_convert (tz[, axis, level, copy]) | Convert tz-aware axis to target time zone. |
Series.tz_localize (tz[, axis, level, copy, …]) | Localize tz-naive index of a Series or DataFrame to target time zone. |
Series.at_time (time[, asof, axis]) | Select values at particular time of day (e.g. |
Series.between_time (start_time, end_time[, …]) | Select values between particular times of the day (e.g., 9:00-9:30 AM). |
Series.tshift ([periods, freq, axis]) | Shift the time index, using the index’s frequency if available. |
Series.slice_shift ([periods, axis]) | Equivalent to shift without copying data. |
Pandas provides dtype-specific methods under various accessors. These are separate namespaces within Series
that only apply to specific data types.
Series.dt.to_period (*args, **kwargs) | Cast to PeriodArray/Index at a particular frequency. |
Series.dt.to_pydatetime () | Return the data as an array of native Python datetime objects. |
Series.dt.tz_localize (*args, **kwargs) | Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. |
Series.dt.tz_convert (*args, **kwargs) | Convert tz-aware Datetime Array/Index from one time zone to another. |
Series.dt.normalize (*args, **kwargs) | Convert times to midnight. |
Series.dt.strftime (*args, **kwargs) | Convert to Index using specified date_format. |
Series.dt.round (*args, **kwargs) | Perform round operation on the data to the specified freq . |
Series.dt.floor (*args, **kwargs) | Perform floor operation on the data to the specified freq . |
Series.dt.ceil (*args, **kwargs) | Perform ceil operation on the data to the specified freq . |
Series.dt.month_name (*args, **kwargs) | Return the month names of the DateTimeIndex with specified locale. |
Series.dt.day_name (*args, **kwargs) | Return the day names of the DateTimeIndex with specified locale. |
Series.str.capitalize () | Convert strings in the Series/Index to be capitalized. |
Series.str.cat ([others, sep, na_rep, join]) | Concatenate strings in the Series/Index with given separator. |
Series.str.center (width[, fillchar]) | Filling left and right side of strings in the Series/Index with an additional character. |
Series.str.contains (pat[, case, flags, na, …]) | Test if pattern or regex is contained within a string of a Series or Index. |
Series.str.count (pat[, flags]) | Count occurrences of pattern in each string of the Series/Index. |
Series.str.decode (encoding[, errors]) | Decode character string in the Series/Index using indicated encoding. |
Series.str.encode (encoding[, errors]) | Encode character string in the Series/Index using indicated encoding. |
Series.str.endswith (pat[, na]) | Test if the end of each string element matches a pattern. |
Series.str.extract (pat[, flags, expand]) | Extract capture groups in the regex pat as columns in a DataFrame. |
Series.str.extractall (pat[, flags]) | For each subject string in the Series, extract groups from all matches of regular expression pat. |
Series.str.find (sub[, start, end]) | Return lowest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. |
Series.str.findall (pat[, flags]) | Find all occurrences of pattern or regular expression in the Series/Index. |
Series.str.get (i) | Extract element from each component at specified position. |
Series.str.index (sub[, start, end]) | Return lowest indexes in each strings where the substring is fully contained between [start:end]. |
Series.str.join (sep) | Join lists contained as elements in the Series/Index with passed delimiter. |
Series.str.len () | Computes the length of each element in the Series/Index. |
Series.str.ljust (width[, fillchar]) | Filling right side of strings in the Series/Index with an additional character. |
Series.str.lower () | Convert strings in the Series/Index to lowercase. |
Series.str.lstrip ([to_strip]) | Remove leading and trailing characters. |
Series.str.match (pat[, case, flags, na]) | Determine if each string matches a regular expression. |
Series.str.normalize (form) | Return the Unicode normal form for the strings in the Series/Index. |
Series.str.pad (width[, side, fillchar]) | Pad strings in the Series/Index up to width. |
Series.str.partition ([sep, expand]) | Split the string at the first occurrence of sep . |
Series.str.repeat (repeats) | Duplicate each string in the Series or Index. |
Series.str.replace (pat, repl[, n, case, …]) | Replace occurrences of pattern/regex in the Series/Index with some other string. |
Series.str.rfind (sub[, start, end]) | Return highest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. |
Series.str.rindex (sub[, start, end]) | Return highest indexes in each strings where the substring is fully contained between [start:end]. |
Series.str.rjust (width[, fillchar]) | Filling left side of strings in the Series/Index with an additional character. |
Series.str.rpartition ([sep, expand]) | Split the string at the last occurrence of sep . |
Series.str.rstrip ([to_strip]) | Remove leading and trailing characters. |
Series.str.slice ([start, stop, step]) | Slice substrings from each element in the Series or Index. |
Series.str.slice_replace ([start, stop, repl]) | Replace a positional slice of a string with another value. |
Series.str.split ([pat, n, expand]) | Split strings around given separator/delimiter. |
Series.str.rsplit ([pat, n, expand]) | Split strings around given separator/delimiter. |
Series.str.startswith (pat[, na]) | Test if the start of each string element matches a pattern. |
Series.str.strip ([to_strip]) | Remove leading and trailing characters. |
Series.str.swapcase () | Convert strings in the Series/Index to be swapcased. |
Series.str.title () | Convert strings in the Series/Index to titlecase. |
Series.str.translate (table[, deletechars]) | Map all characters in the string through the given mapping table. |
Series.str.upper () | Convert strings in the Series/Index to uppercase. |
Series.str.wrap (width, **kwargs) | Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width. |
Series.str.zfill (width) | Pad strings in the Series/Index by prepending ‘0’ characters. |
Series.str.isalnum () | Check whether all characters in each string are alphanumeric. |
Series.str.isalpha () | Check whether all characters in each string are alphabetic. |
Series.str.isdigit () | Check whether all characters in each string are digits. |
Series.str.isspace () | Check whether all characters in each string are whitespace. |
Series.str.islower () | Check whether all characters in each string are lowercase. |
Series.str.isupper () | Check whether all characters in each string are uppercase. |
Series.str.istitle () | Check whether all characters in each string are titlecase. |
Series.str.isnumeric () | Check whether all characters in each string are numeric. |
Series.str.isdecimal () | Check whether all characters in each string are decimal. |
Series.str.get_dummies ([sep]) | Split each string in the Series by sep and return a frame of dummy/indicator variables. |
Series.to_pickle (path[, compression, protocol]) | Pickle (serialize) object to file. |
Series.to_csv (*args, **kwargs) | Write object to a comma-separated values (csv) file. |
Series.to_dict ([into]) | Convert Series to {label -> value} dict or dict-like object. |
Series.to_excel (excel_writer[, sheet_name, …]) | Write object to an Excel sheet. |
Series.to_frame ([name]) | Convert Series to DataFrame. |
Series.to_xarray () | Return an xarray object from the pandas object. |
Series.to_hdf (path_or_buf, key, **kwargs) | Write the contained data to an HDF5 file using HDFStore. |
Series.to_sql (name, con[, schema, …]) | Write records stored in a DataFrame to a SQL database. |
Series.to_msgpack ([path_or_buf, encoding]) | Serialize object to input file path using msgpack format. |
Series.to_json ([path_or_buf, orient, …]) | Convert the object to a JSON string. |
Series.to_sparse ([kind, fill_value]) | Convert Series to SparseSeries. |
Series.to_dense () | Return dense representation of NDFrame (as opposed to sparse). |
Series.to_string ([buf, na_rep, …]) | Render a string representation of the Series. |
Series.to_clipboard ([excel, sep]) | Copy object to the system clipboard. |
Series.to_latex ([buf, columns, col_space, …]) | Render an object to a LaTeX tabular environment table. |