| Series.add(other[, level, fill_value, axis]) | Addition of series and other, element-wise (binary operator add). | 
 
| Series.sub(other[, level, fill_value, axis]) | Subtraction of series and other, element-wise (binary operator sub). | 
 
| Series.mul(other[, level, fill_value, axis]) | Multiplication of series and other, element-wise (binary operator mul). | 
 
| Series.div(other[, level, fill_value, axis]) | Floating division of series and other, element-wise (binary operator truediv). | 
 
| Series.truediv(other[, level, fill_value, axis]) | Floating division of series and other, element-wise (binary operator truediv). | 
 
| Series.floordiv(other[, level, fill_value, axis]) | Integer division of series and other, element-wise (binary operator floordiv). | 
 
| Series.mod(other[, level, fill_value, axis]) | Modulo of series and other, element-wise (binary operator mod). | 
 
| Series.pow(other[, level, fill_value, axis]) | Exponential power of series and other, element-wise (binary operator pow). | 
 
| Series.radd(other[, level, fill_value, axis]) | Addition of series and other, element-wise (binary operator radd). | 
 
| Series.rsub(other[, level, fill_value, axis]) | Subtraction of series and other, element-wise (binary operator rsub). | 
 
| Series.rmul(other[, level, fill_value, axis]) | Multiplication of series and other, element-wise (binary operator rmul). | 
 
| Series.rdiv(other[, level, fill_value, axis]) | Floating division of series and other, element-wise (binary operator rtruediv). | 
 
| Series.rtruediv(other[, level, fill_value, axis]) | Floating division of series and other, element-wise (binary operator rtruediv). | 
 
| Series.rfloordiv(other[, level, fill_value, …]) | Integer division of series and other, element-wise (binary operator rfloordiv). | 
 
| Series.rmod(other[, level, fill_value, axis]) | Modulo of series and other, element-wise (binary operator rmod). | 
 
| Series.rpow(other[, level, fill_value, axis]) | Exponential power of series and other, element-wise (binary operator rpow). | 
 
| Series.combine(other, func[, fill_value]) | Combine the Series with a Series or scalar according to func. | 
 
| Series.combine_first(other) | Combine Series values, choosing the calling Series’s values first. | 
 
| Series.round([decimals]) | Round each value in a Series to the given number of decimals. | 
 
| Series.lt(other[, level, fill_value, axis]) | Less than of series and other, element-wise (binary operator lt). | 
 
| Series.gt(other[, level, fill_value, axis]) | Greater than of series and other, element-wise (binary operator gt). | 
 
| Series.le(other[, level, fill_value, axis]) | Less than or equal to of series and other, element-wise (binary operator le). | 
 
| Series.ge(other[, level, fill_value, axis]) | Greater than or equal to of series and other, element-wise (binary operator ge). | 
 
| Series.ne(other[, level, fill_value, axis]) | Not equal to of series and other, element-wise (binary operator ne). | 
 
| Series.eq(other[, level, fill_value, axis]) | Equal to of series and other, element-wise (binary operator eq). | 
 
| Series.product([axis, skipna, level, …]) | Return the product of the values for the requested axis. | 
 
| Series.dot(other) | Compute the dot product between the Series and the columns of other. | 
  
      
| Series.apply(func[, convert_dtype, args]) | Invoke function on values of Series. | 
 
| Series.agg(func[, axis]) | Aggregate using one or more operations over the specified axis. | 
 
| Series.aggregate(func[, axis]) | Aggregate using one or more operations over the specified axis. | 
 
| Series.transform(func[, axis]) | Call funcon self producing a Series with transformed values and that has the same axis length as self. | 
 
| Series.map(arg[, na_action]) | Map values of Series according to input correspondence. | 
 
| Series.groupby([by, axis, level, as_index, …]) | Group DataFrame or Series using a mapper or by a Series of columns. | 
 
| Series.rolling(window[, min_periods, …]) | Provides rolling window calculations. | 
 
| Series.expanding([min_periods, center, axis]) | Provides expanding transformations. | 
 
| Series.ewm([com, span, halflife, alpha, …]) | Provides exponential weighted functions. | 
 
| Series.pipe(func, *args, **kwargs) | Apply func(self, *args, **kwargs). | 
  
      
| Series.abs() | Return a Series/DataFrame with absolute numeric value of each element. | 
 
| Series.all([axis, bool_only, skipna, level]) | Return whether all elements are True, potentially over an axis. | 
 
| Series.any([axis, bool_only, skipna, level]) | Return whether any element is True, potentially over an axis. | 
 
| Series.autocorr([lag]) | Compute the lag-N autocorrelation. | 
 
| Series.between(left, right[, inclusive]) | Return boolean Series equivalent to left <= series <= right. | 
 
| Series.clip([lower, upper, axis, inplace]) | Trim values at input threshold(s). | 
 
| Series.clip_lower(threshold[, axis, inplace]) | (DEPRECATED) Trim values below a given threshold. | 
 
| Series.clip_upper(threshold[, axis, inplace]) | (DEPRECATED) Trim values above a given threshold. | 
 
| Series.corr(other[, method, min_periods]) | Compute correlation with otherSeries, excluding missing values. | 
 
| Series.count([level]) | Return number of non-NA/null observations in the Series. | 
 
| Series.cov(other[, min_periods]) | Compute covariance with Series, excluding missing values. | 
 
| Series.cummax([axis, skipna]) | Return cumulative maximum over a DataFrame or Series axis. | 
 
| Series.cummin([axis, skipna]) | Return cumulative minimum over a DataFrame or Series axis. | 
 
| Series.cumprod([axis, skipna]) | Return cumulative product over a DataFrame or Series axis. | 
 
| Series.cumsum([axis, skipna]) | Return cumulative sum over a DataFrame or Series axis. | 
 
| Series.describe([percentiles, include, exclude]) | Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaNvalues. | 
 
| Series.diff([periods]) | First discrete difference of element. | 
 
| Series.factorize([sort, na_sentinel]) | Encode the object as an enumerated type or categorical variable. | 
 
| Series.kurt([axis, skipna, level, numeric_only]) | Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). | 
 
| Series.mad([axis, skipna, level]) | Return the mean absolute deviation of the values for the requested axis. | 
 
| Series.max([axis, skipna, level, numeric_only]) | Return the maximum of the values for the requested axis. | 
 
| Series.mean([axis, skipna, level, numeric_only]) | Return the mean of the values for the requested axis. | 
 
| Series.median([axis, skipna, level, …]) | Return the median of the values for the requested axis. | 
 
| Series.min([axis, skipna, level, numeric_only]) | Return the minimum of the values for the requested axis. | 
 
| Series.mode([dropna]) | Return the mode(s) of the dataset. | 
 
| Series.nlargest([n, keep]) | Return the largest nelements. | 
 
| Series.nsmallest([n, keep]) | Return the smallest nelements. | 
 
| Series.pct_change([periods, fill_method, …]) | Percentage change between the current and a prior element. | 
 
| Series.prod([axis, skipna, level, …]) | Return the product of the values for the requested axis. | 
 
| Series.quantile([q, interpolation]) | Return value at the given quantile. | 
 
| Series.rank([axis, method, numeric_only, …]) | Compute numerical data ranks (1 through n) along axis. | 
 
| Series.sem([axis, skipna, level, ddof, …]) | Return unbiased standard error of the mean over requested axis. | 
 
| Series.skew([axis, skipna, level, numeric_only]) | Return unbiased skew over requested axis Normalized by N-1. | 
 
| Series.std([axis, skipna, level, ddof, …]) | Return sample standard deviation over requested axis. | 
 
| Series.sum([axis, skipna, level, …]) | Return the sum of the values for the requested axis. | 
 
| Series.var([axis, skipna, level, ddof, …]) | Return unbiased variance over requested axis. | 
 
| Series.kurtosis([axis, skipna, level, …]) | Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). | 
 
| Series.unique() | Return unique values of Series object. | 
 
| Series.nunique([dropna]) | Return number of unique elements in the object. | 
 
| Series.is_unique | Return boolean if values in the object are unique. | 
 
| Series.is_monotonic | Return boolean if values in the object are monotonic_increasing. | 
 
| Series.is_monotonic_increasing | Return boolean if values in the object are monotonic_increasing. | 
 
| Series.is_monotonic_decreasing | Return boolean if values in the object are monotonic_decreasing. | 
 
| Series.value_counts([normalize, sort, …]) | Return a Series containing counts of unique values. | 
 
| Series.compound([axis, skipna, level]) | Return the compound percentage of the values for the requested axis. | 
  
      
| Series.align(other[, join, axis, level, …]) | Align two objects on their axes with the specified join method for each axis Index. | 
 
| Series.drop([labels, axis, index, columns, …]) | Return Series with specified index labels removed. | 
 
| Series.droplevel(level[, axis]) | Return DataFrame with requested index / column level(s) removed. | 
 
| Series.drop_duplicates([keep, inplace]) | Return Series with duplicate values removed. | 
 
| Series.duplicated([keep]) | Indicate duplicate Series values. | 
 
| Series.equals(other) | Test whether two objects contain the same elements. | 
 
| Series.first(offset) | Convenience method for subsetting initial periods of time series data based on a date offset. | 
 
| Series.head([n]) | Return the first nrows. | 
 
| Series.idxmax([axis, skipna]) | Return the row label of the maximum value. | 
 
| Series.idxmin([axis, skipna]) | Return the row label of the minimum value. | 
 
| Series.isin(values) | Check whether valuesare contained in Series. | 
 
| Series.last(offset) | Convenience method for subsetting final periods of time series data based on a date offset. | 
 
| Series.reindex([index]) | Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. | 
 
| Series.reindex_like(other[, method, copy, …]) | Return an object with matching indices as other object. | 
 
| Series.rename([index]) | Alter Series index labels or name. | 
 
| Series.rename_axis([mapper, index, columns, …]) | Set the name of the axis for the index or columns. | 
 
| Series.reset_index([level, drop, name, inplace]) | Generate a new DataFrame or Series with the index reset. | 
 
| Series.sample([n, frac, replace, weights, …]) | Return a random sample of items from an axis of object. | 
 
| Series.select(crit[, axis]) | (DEPRECATED) Return data corresponding to axis labels matching criteria. | 
 
| Series.set_axis(labels[, axis, inplace]) | Assign desired index to given axis. | 
 
| Series.take(indices[, axis, convert, is_copy]) | Return the elements in the given positional indices along an axis. | 
 
| Series.tail([n]) | Return the last nrows. | 
 
| Series.truncate([before, after, axis, copy]) | Truncate a Series or DataFrame before and after some index value. | 
 
| Series.where(cond[, other, inplace, axis, …]) | Replace values where the condition is False. | 
 
| Series.mask(cond[, other, inplace, axis, …]) | Replace values where the condition is True. | 
 
| Series.add_prefix(prefix) | Prefix labels with string prefix. | 
 
| Series.add_suffix(suffix) | Suffix labels with string suffix. | 
 
| Series.filter([items, like, regex, axis]) | Subset rows or columns of dataframe according to labels in the specified index. | 
  
      
| Series.argsort([axis, kind, order]) | Overrides ndarray.argsort. | 
 
| Series.argmin([axis, skipna]) | (DEPRECATED) Return the row label of the minimum value. | 
 
| Series.argmax([axis, skipna]) | (DEPRECATED) Return the row label of the maximum value. | 
 
| Series.reorder_levels(order) | Rearrange index levels using input order. | 
 
| Series.sort_values([axis, ascending, …]) | Sort by the values. | 
 
| Series.sort_index([axis, level, ascending, …]) | Sort Series by index labels. | 
 
| Series.swaplevel([i, j, copy]) | Swap levels i and j in a MultiIndex. | 
 
| Series.unstack([level, fill_value]) | Unstack, a.k.a. | 
 
| Series.searchsorted(value[, side, sorter]) | Find indices where elements should be inserted to maintain order. | 
 
| Series.ravel([order]) | Return the flattened underlying data as an ndarray. | 
 
| Series.repeat(repeats[, axis]) | Repeat elements of a Series. | 
 
| Series.squeeze([axis]) | Squeeze 1 dimensional axis objects into scalars. | 
 
| Series.view([dtype]) | Create a new view of the Series. | 
  
      
| Series.asfreq(freq[, method, how, …]) | Convert TimeSeries to specified frequency. | 
 
| Series.asof(where[, subset]) | Return the last row(s) without any NaNs before where. | 
 
| Series.shift([periods, freq, axis, fill_value]) | Shift index by desired number of periods with an optional time freq. | 
 
| Series.first_valid_index() | Return index for first non-NA/null value. | 
 
| Series.last_valid_index() | Return index for last non-NA/null value. | 
 
| Series.resample(rule[, how, axis, …]) | Resample time-series data. | 
 
| Series.tz_convert(tz[, axis, level, copy]) | Convert tz-aware axis to target time zone. | 
 
| Series.tz_localize(tz[, axis, level, copy, …]) | Localize tz-naive index of a Series or DataFrame to target time zone. | 
 
| Series.at_time(time[, asof, axis]) | Select values at particular time of day (e.g. | 
 
| Series.between_time(start_time, end_time[, …]) | Select values between particular times of the day (e.g., 9:00-9:30 AM). | 
 
| Series.tshift([periods, freq, axis]) | Shift the time index, using the index’s frequency if available. | 
 
| Series.slice_shift([periods, axis]) | Equivalent to shiftwithout copying data. | 
  
   Pandas provides dtype-specific methods under various accessors. These are separate namespaces within Series that only apply to specific data types.
    
| Series.dt.to_period(*args, **kwargs) | Cast to PeriodArray/Index at a particular frequency. | 
 
| Series.dt.to_pydatetime() | Return the data as an array of native Python datetime objects. | 
 
| Series.dt.tz_localize(*args, **kwargs) | Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. | 
 
| Series.dt.tz_convert(*args, **kwargs) | Convert tz-aware Datetime Array/Index from one time zone to another. | 
 
| Series.dt.normalize(*args, **kwargs) | Convert times to midnight. | 
 
| Series.dt.strftime(*args, **kwargs) | Convert to Index using specified date_format. | 
 
| Series.dt.round(*args, **kwargs) | Perform round operation on the data to the specified freq. | 
 
| Series.dt.floor(*args, **kwargs) | Perform floor operation on the data to the specified freq. | 
 
| Series.dt.ceil(*args, **kwargs) | Perform ceil operation on the data to the specified freq. | 
 
| Series.dt.month_name(*args, **kwargs) | Return the month names of the DateTimeIndex with specified locale. | 
 
| Series.dt.day_name(*args, **kwargs) | Return the day names of the DateTimeIndex with specified locale. | 
  
      
| Series.str.capitalize() | Convert strings in the Series/Index to be capitalized. | 
 
| Series.str.cat([others, sep, na_rep, join]) | Concatenate strings in the Series/Index with given separator. | 
 
| Series.str.center(width[, fillchar]) | Filling left and right side of strings in the Series/Index with an additional character. | 
 
| Series.str.contains(pat[, case, flags, na, …]) | Test if pattern or regex is contained within a string of a Series or Index. | 
 
| Series.str.count(pat[, flags]) | Count occurrences of pattern in each string of the Series/Index. | 
 
| Series.str.decode(encoding[, errors]) | Decode character string in the Series/Index using indicated encoding. | 
 
| Series.str.encode(encoding[, errors]) | Encode character string in the Series/Index using indicated encoding. | 
 
| Series.str.endswith(pat[, na]) | Test if the end of each string element matches a pattern. | 
 
| Series.str.extract(pat[, flags, expand]) | Extract capture groups in the regex patas columns in a DataFrame. | 
 
| Series.str.extractall(pat[, flags]) | For each subject string in the Series, extract groups from all matches of regular expression pat. | 
 
| Series.str.find(sub[, start, end]) | Return lowest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. | 
 
| Series.str.findall(pat[, flags]) | Find all occurrences of pattern or regular expression in the Series/Index. | 
 
| Series.str.get(i) | Extract element from each component at specified position. | 
 
| Series.str.index(sub[, start, end]) | Return lowest indexes in each strings where the substring is fully contained between [start:end]. | 
 
| Series.str.join(sep) | Join lists contained as elements in the Series/Index with passed delimiter. | 
 
| Series.str.len() | Computes the length of each element in the Series/Index. | 
 
| Series.str.ljust(width[, fillchar]) | Filling right side of strings in the Series/Index with an additional character. | 
 
| Series.str.lower() | Convert strings in the Series/Index to lowercase. | 
 
| Series.str.lstrip([to_strip]) | Remove leading and trailing characters. | 
 
| Series.str.match(pat[, case, flags, na]) | Determine if each string matches a regular expression. | 
 
| Series.str.normalize(form) | Return the Unicode normal form for the strings in the Series/Index. | 
 
| Series.str.pad(width[, side, fillchar]) | Pad strings in the Series/Index up to width. | 
 
| Series.str.partition([sep, expand]) | Split the string at the first occurrence of sep. | 
 
| Series.str.repeat(repeats) | Duplicate each string in the Series or Index. | 
 
| Series.str.replace(pat, repl[, n, case, …]) | Replace occurrences of pattern/regex in the Series/Index with some other string. | 
 
| Series.str.rfind(sub[, start, end]) | Return highest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. | 
 
| Series.str.rindex(sub[, start, end]) | Return highest indexes in each strings where the substring is fully contained between [start:end]. | 
 
| Series.str.rjust(width[, fillchar]) | Filling left side of strings in the Series/Index with an additional character. | 
 
| Series.str.rpartition([sep, expand]) | Split the string at the last occurrence of sep. | 
 
| Series.str.rstrip([to_strip]) | Remove leading and trailing characters. | 
 
| Series.str.slice([start, stop, step]) | Slice substrings from each element in the Series or Index. | 
 
| Series.str.slice_replace([start, stop, repl]) | Replace a positional slice of a string with another value. | 
 
| Series.str.split([pat, n, expand]) | Split strings around given separator/delimiter. | 
 
| Series.str.rsplit([pat, n, expand]) | Split strings around given separator/delimiter. | 
 
| Series.str.startswith(pat[, na]) | Test if the start of each string element matches a pattern. | 
 
| Series.str.strip([to_strip]) | Remove leading and trailing characters. | 
 
| Series.str.swapcase() | Convert strings in the Series/Index to be swapcased. | 
 
| Series.str.title() | Convert strings in the Series/Index to titlecase. | 
 
| Series.str.translate(table[, deletechars]) | Map all characters in the string through the given mapping table. | 
 
| Series.str.upper() | Convert strings in the Series/Index to uppercase. | 
 
| Series.str.wrap(width, **kwargs) | Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width. | 
 
| Series.str.zfill(width) | Pad strings in the Series/Index by prepending ‘0’ characters. | 
 
| Series.str.isalnum() | Check whether all characters in each string are alphanumeric. | 
 
| Series.str.isalpha() | Check whether all characters in each string are alphabetic. | 
 
| Series.str.isdigit() | Check whether all characters in each string are digits. | 
 
| Series.str.isspace() | Check whether all characters in each string are whitespace. | 
 
| Series.str.islower() | Check whether all characters in each string are lowercase. | 
 
| Series.str.isupper() | Check whether all characters in each string are uppercase. | 
 
| Series.str.istitle() | Check whether all characters in each string are titlecase. | 
 
| Series.str.isnumeric() | Check whether all characters in each string are numeric. | 
 
| Series.str.isdecimal() | Check whether all characters in each string are decimal. | 
 
| Series.str.get_dummies([sep]) | Split each string in the Series by sep and return a frame of dummy/indicator variables. | 
  
      
| Series.to_pickle(path[, compression, protocol]) | Pickle (serialize) object to file. | 
 
| Series.to_csv(*args, **kwargs) | Write object to a comma-separated values (csv) file. | 
 
| Series.to_dict([into]) | Convert Series to {label -> value} dict or dict-like object. | 
 
| Series.to_excel(excel_writer[, sheet_name, …]) | Write object to an Excel sheet. | 
 
| Series.to_frame([name]) | Convert Series to DataFrame. | 
 
| Series.to_xarray() | Return an xarray object from the pandas object. | 
 
| Series.to_hdf(path_or_buf, key, **kwargs) | Write the contained data to an HDF5 file using HDFStore. | 
 
| Series.to_sql(name, con[, schema, …]) | Write records stored in a DataFrame to a SQL database. | 
 
| Series.to_msgpack([path_or_buf, encoding]) | Serialize object to input file path using msgpack format. | 
 
| Series.to_json([path_or_buf, orient, …]) | Convert the object to a JSON string. | 
 
| Series.to_sparse([kind, fill_value]) | Convert Series to SparseSeries. | 
 
| Series.to_dense() | Return dense representation of NDFrame (as opposed to sparse). | 
 
| Series.to_string([buf, na_rep, …]) | Render a string representation of the Series. | 
 
| Series.to_clipboard([excel, sep]) | Copy object to the system clipboard. | 
 
| Series.to_latex([buf, columns, col_space, …]) | Render an object to a LaTeX tabular environment table. |