pandas.read_sql_table
-
pandas.read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True, parse_dates=None, columns=None, chunksize=None)
[source] -
Read SQL database table into a DataFrame.
Given a table name and a SQLAlchemy connectable, returns a DataFrame. This function does not support DBAPI connections.
Parameters: -
table_name : string
-
Name of SQL table in database.
-
con : SQLAlchemy connectable (or database string URI)
-
SQLite DBAPI connection mode not supported.
-
schema : string, default None
-
Name of SQL schema in database to query (if database flavor supports this). Uses default schema if None (default).
-
index_col : string or list of strings, optional, default: None
-
Column(s) to set as index(MultiIndex).
-
coerce_float : boolean, default True
-
Attempts to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision.
-
parse_dates : list or dict, default: None
-
- List of column names to parse as dates.
- Dict of
{column_name: format string}
where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps. - Dict of
{column_name: arg dict}
, where the arg dict corresponds to the keyword arguments ofpandas.to_datetime()
Especially useful with databases without native Datetime support, such as SQLite.
-
columns : list, default: None
-
List of column names to select from SQL table
-
chunksize : int, default None
-
If specified, returns an iterator where
chunksize
is the number of rows to include in each chunk.
Returns: - DataFrame
Notes
Any datetime values with time zone information will be converted to UTC.
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.read_sql_table.html