pandas.DataFrame.nunique
-
DataFrame.nunique(axis=0, dropna=True)
[source] -
Count distinct observations over requested axis.
Return Series with number of distinct observations. Can ignore NaN values.
New in version 0.20.0.
Parameters: -
axis : {0 or ‘index’, 1 or ‘columns’}, default 0
-
The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.
-
dropna : bool, default True
-
Don’t include NaN in the counts.
Returns: -
nunique : Series
See also
-
Series.nunique
- Method nunique for Series.
-
DataFrame.count
- Count non-NA cells for each column or row.
Examples
>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >>> df.nunique() A 3 B 1 dtype: int64
>>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.nunique.html