pandas.DataFrame.to_records
-
DataFrame.to_records(index=True, convert_datetime64=None, column_dtypes=None, index_dtypes=None)
[source] -
Convert DataFrame to a NumPy record array.
Index will be included as the first field of the record array if requested.
Parameters: -
index : bool, default True
-
Include index in resulting record array, stored in ‘index’ field or using the index label, if set.
-
convert_datetime64 : bool, default None
-
Deprecated since version 0.23.0.
Whether to convert the index to datetime.datetime if it is a DatetimeIndex.
-
column_dtypes : str, type, dict, default None
-
New in version 0.24.0.
If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types.
-
index_dtypes : str, type, dict, default None
-
New in version 0.24.0.
If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types.
This mapping is applied only if
index=True
.
Returns: - numpy.recarray
-
NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries.
See also
-
DataFrame.from_records
- Convert structured or record ndarray to DataFrame.
-
numpy.recarray
- An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet.
Examples
>>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')])
If the DataFrame index has no label then the recarray field name is set to ‘index’. If the index has a label then this is used as the field name:
>>> df.index = df.index.rename("I") >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')])
The index can be excluded from the record array:
>>> df.to_records(index=False) rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')])
Data types can be specified for the columns:
>>> df.to_records(column_dtypes={"A": "int32"}) rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')])
As well as for the index:
>>> df.to_records(index_dtypes="<S2") rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')])
>>> index_dtypes = "<S{}".format(df.index.str.len().max()) >>> df.to_records(index_dtypes=index_dtypes) rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')])
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_records.html