pandas.Panel.product
-
Panel.product(axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)
[source] -
Return the product of the values for the requested axis.
Parameters: -
axis : {items (0), major_axis (1), minor_axis (2)}
-
Axis for the function to be applied on.
-
skipna : bool, default True
-
Exclude NA/null values when computing the result.
-
level : int or level name, default None
-
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame.
-
numeric_only : bool, default None
-
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
-
min_count : int, default 0
-
The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.New in version 0.22.0: Added with the default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.
- **kwargs
-
Additional keyword arguments to be passed to the function.
Returns: -
prod : DataFrame or Panel (if level specified)
Examples
By default, the product of an empty or all-NA Series is
1
>>> pd.Series([]).prod() 1.0
This can be controlled with the
min_count
parameter>>> pd.Series([]).prod(min_count=1) nan
Thanks to the
skipna
parameter,min_count
handles all-NA and empty series identically.>>> pd.Series([np.nan]).prod() 1.0
>>> pd.Series([np.nan]).prod(min_count=1) nan
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.Panel.product.html