pandas.read_gbq
- 
pandas.read_gbq(query, project_id=None, index_col=None, col_order=None, reauth=False, auth_local_webserver=False, dialect=None, location=None, configuration=None, credentials=None, private_key=None, verbose=None)[source] - 
Load data from Google BigQuery.
This function requires the pandas-gbq package.
See the How to authenticate with Google BigQuery guide for authentication instructions.
Parameters: - 
query : str - 
SQL-Like Query to return data values.
 - 
project_id : str, optional - 
Google BigQuery Account project ID. Optional when available from the environment.
 - 
index_col : str, optional - 
Name of result column to use for index in results DataFrame.
 - 
col_order : list(str), optional - 
List of BigQuery column names in the desired order for results DataFrame.
 - 
reauth : boolean, default False - 
Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used.
 - 
auth_local_webserver : boolean, default False - 
Use the local webserver flow instead of the console flow when getting user credentials.
New in version 0.2.0 of pandas-gbq.
 - 
dialect : str, default ‘legacy’ - 
Note: The default value is changing to ‘standard’ in a future verion.
SQL syntax dialect to use. Value can be one of:
- 
'legacy' - 
Use BigQuery’s legacy SQL dialect. For more information see BigQuery Legacy SQL Reference.
 - 
'standard' - 
Use BigQuery’s standard SQL, which is compliant with the SQL 2011 standard. For more information see BigQuery Standard SQL Reference.
 
Changed in version 0.24.0.
 - 
 - 
location : str, optional - 
Location where the query job should run. See the BigQuery locations documentation for a list of available locations. The location must match that of any datasets used in the query.
New in version 0.5.0 of pandas-gbq.
 - 
configuration : dict, optional - 
Query config parameters for job processing. For example:
configuration = {‘query’: {‘useQueryCache’: False}}
For more information see BigQuery REST API Reference.
 - 
credentials : google.auth.credentials.Credentials, optional - 
Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine
google.auth.compute_engine.Credentialsor Service Accountgoogle.oauth2.service_account.Credentialsdirectly.New in version 0.8.0 of pandas-gbq.
New in version 0.24.0.
 - 
private_key : str, deprecated - 
Deprecated in pandas-gbq version 0.8.0. Use the
credentialsparameter andgoogle.oauth2.service_account.Credentials.from_service_account_info()orgoogle.oauth2.service_account.Credentials.from_service_account_file()instead.Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. Jupyter/IPython notebook on remote host).
 - 
verbose : None, deprecated - 
Deprecated in pandas-gbq version 0.4.0. Use the logging module to adjust verbosity instead.
 
Returns: - df: DataFrame
 - 
DataFrame representing results of query.
 
See also
- 
 
pandas_gbq.read_gbq - This function in the pandas-gbq library.
 - 
 
pandas.DataFrame.to_gbq - Write a DataFrame to Google BigQuery.
 
 - 
 
    © 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
    https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.read_gbq.html