pandas.read_gbq
-
pandas.read_gbq(query, project_id=None, index_col=None, col_order=None, reauth=False, auth_local_webserver=False, dialect=None, location=None, configuration=None, credentials=None, private_key=None, verbose=None)
[source] -
Load data from Google BigQuery.
This function requires the pandas-gbq package.
See the How to authenticate with Google BigQuery guide for authentication instructions.
Parameters: -
query : str
-
SQL-Like Query to return data values.
-
project_id : str, optional
-
Google BigQuery Account project ID. Optional when available from the environment.
-
index_col : str, optional
-
Name of result column to use for index in results DataFrame.
-
col_order : list(str), optional
-
List of BigQuery column names in the desired order for results DataFrame.
-
reauth : boolean, default False
-
Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used.
-
auth_local_webserver : boolean, default False
-
Use the local webserver flow instead of the console flow when getting user credentials.
New in version 0.2.0 of pandas-gbq.
-
dialect : str, default ‘legacy’
-
Note: The default value is changing to ‘standard’ in a future verion.
SQL syntax dialect to use. Value can be one of:
-
'legacy'
-
Use BigQuery’s legacy SQL dialect. For more information see BigQuery Legacy SQL Reference.
-
'standard'
-
Use BigQuery’s standard SQL, which is compliant with the SQL 2011 standard. For more information see BigQuery Standard SQL Reference.
Changed in version 0.24.0.
-
-
location : str, optional
-
Location where the query job should run. See the BigQuery locations documentation for a list of available locations. The location must match that of any datasets used in the query.
New in version 0.5.0 of pandas-gbq.
-
configuration : dict, optional
-
Query config parameters for job processing. For example:
configuration = {‘query’: {‘useQueryCache’: False}}
For more information see BigQuery REST API Reference.
-
credentials : google.auth.credentials.Credentials, optional
-
Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine
google.auth.compute_engine.Credentials
or Service Accountgoogle.oauth2.service_account.Credentials
directly.New in version 0.8.0 of pandas-gbq.
New in version 0.24.0.
-
private_key : str, deprecated
-
Deprecated in pandas-gbq version 0.8.0. Use the
credentials
parameter andgoogle.oauth2.service_account.Credentials.from_service_account_info()
orgoogle.oauth2.service_account.Credentials.from_service_account_file()
instead.Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. Jupyter/IPython notebook on remote host).
-
verbose : None, deprecated
-
Deprecated in pandas-gbq version 0.4.0. Use the logging module to adjust verbosity instead.
Returns: - df: DataFrame
-
DataFrame representing results of query.
See also
-
pandas_gbq.read_gbq
- This function in the pandas-gbq library.
-
pandas.DataFrame.to_gbq
- Write a DataFrame to Google BigQuery.
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.read_gbq.html