pandas.api.types.is_sparse
-
pandas.api.types.is_sparse(arr)
[source] -
Check whether an array-like is a 1-D pandas sparse array.
Check that the one-dimensional array-like is a pandas sparse array. Returns True if it is a pandas sparse array, not another type of sparse array.
Parameters: -
arr : array-like
-
Array-like to check.
Returns: - bool
-
Whether or not the array-like is a pandas sparse array.
See also
-
DataFrame.to_sparse
- Convert DataFrame to a SparseDataFrame.
-
Series.to_sparse
- Convert Series to SparseSeries.
-
Series.to_dense
- Return dense representation of a Series.
Examples
Returns
True
if the parameter is a 1-D pandas sparse array.>>> is_sparse(pd.SparseArray([0, 0, 1, 0])) True >>> is_sparse(pd.SparseSeries([0, 0, 1, 0])) True
Returns
False
if the parameter is not sparse.>>> is_sparse(np.array([0, 0, 1, 0])) False >>> is_sparse(pd.Series([0, 1, 0, 0])) False
Returns
False
if the parameter is not a pandas sparse array.>>> from scipy.sparse import bsr_matrix >>> is_sparse(bsr_matrix([0, 1, 0, 0])) False
Returns
False
if the parameter has more than one dimension.>>> df = pd.SparseDataFrame([389., 24., 80.5, np.nan], columns=['max_speed'], index=['falcon', 'parrot', 'lion', 'monkey']) >>> is_sparse(df) False >>> is_sparse(df.max_speed) True
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.api.types.is_sparse.html