pandas.Series.sort_index
-
Series.sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True)
[source] -
Sort Series by index labels.
Returns a new Series sorted by label if
inplace
argument isFalse
, otherwise updates the original series and returns None.Parameters: -
axis : int, default 0
-
Axis to direct sorting. This can only be 0 for Series.
-
level : int, optional
-
If not None, sort on values in specified index level(s).
-
ascending : bool, default true
-
Sort ascending vs. descending.
-
inplace : bool, default False
-
If True, perform operation in-place.
-
kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, default ‘quicksort’
-
Choice of sorting algorithm. See also
numpy.sort()
for more information. ‘mergesort’ is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. -
na_position : {‘first’, ‘last’}, default ‘last’
-
If ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end. Not implemented for MultiIndex.
-
sort_remaining : bool, default True
-
If true and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level.
Returns: - pandas.Series
-
The original Series sorted by the labels
See also
-
DataFrame.sort_index
- Sort DataFrame by the index.
-
DataFrame.sort_values
- Sort DataFrame by the value.
-
Series.sort_values
- Sort Series by the value.
Examples
>>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, 4]) >>> s.sort_index() 1 c 2 b 3 a 4 d dtype: object
Sort Descending
>>> s.sort_index(ascending=False) 4 d 3 a 2 b 1 c dtype: object
Sort Inplace
>>> s.sort_index(inplace=True) >>> s 1 c 2 b 3 a 4 d dtype: object
By default NaNs are put at the end, but use
na_position
to place them at the beginning>>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, np.nan]) >>> s.sort_index(na_position='first') NaN d 1.0 c 2.0 b 3.0 a dtype: object
Specify index level to sort
>>> arrays = [np.array(['qux', 'qux', 'foo', 'foo', ... 'baz', 'baz', 'bar', 'bar']), ... np.array(['two', 'one', 'two', 'one', ... 'two', 'one', 'two', 'one'])] >>> s = pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=arrays) >>> s.sort_index(level=1) bar one 8 baz one 6 foo one 4 qux one 2 bar two 7 baz two 5 foo two 3 qux two 1 dtype: int64
Does not sort by remaining levels when sorting by levels
>>> s.sort_index(level=1, sort_remaining=False) qux one 2 foo one 4 baz one 6 bar one 8 qux two 1 foo two 3 baz two 5 bar two 7 dtype: int64
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.Series.sort_index.html