Essential Basic Functionality

Here we discuss a lot of the essential functionality common to the pandas data structures. Here’s how to create some of the objects used in the examples from the previous section:

In [1]: index = pd.date_range('1/1/2000', periods=8)

In [2]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [3]: df = pd.DataFrame(np.random.randn(8, 3), index=index,
   ...:                   columns=['A', 'B', 'C'])
   ...: 

In [4]: wp = pd.Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'],
   ...:               major_axis=pd.date_range('1/1/2000', periods=5),
   ...:               minor_axis=['A', 'B', 'C', 'D'])
   ...: 

Head and Tail

To view a small sample of a Series or DataFrame object, use the head() and tail() methods. The default number of elements to display is five, but you may pass a custom number.

In [5]: long_series = pd.Series(np.random.randn(1000))

In [6]: long_series.head()
Out[6]: 
0   -2.211372
1    0.974466
2   -2.006747
3   -0.410001
4   -0.078638
dtype: float64

In [7]: long_series.tail(3)

© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/getting_started/basics.html