Essential Basic Functionality
Here we discuss a lot of the essential functionality common to the pandas data structures. Here’s how to create some of the objects used in the examples from the previous section:
In [1]: index = pd.date_range('1/1/2000', periods=8) In [2]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e']) In [3]: df = pd.DataFrame(np.random.randn(8, 3), index=index, ...: columns=['A', 'B', 'C']) ...: In [4]: wp = pd.Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'], ...: major_axis=pd.date_range('1/1/2000', periods=5), ...: minor_axis=['A', 'B', 'C', 'D']) ...:
Head and Tail
To view a small sample of a Series or DataFrame object, use the head()
and tail()
methods. The default number of elements to display is five, but you may pass a custom number.
In [5]: long_series = pd.Series(np.random.randn(1000)) In [6]: long_series.head() Out[6]: 0 -2.211372 1 0.974466 2 -2.006747 3 -0.410001 4 -0.078638 dtype: float64 In [7]: long_series.tail(3)
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/getting_started/basics.html