Frequently Asked Questions (FAQ)
DataFrame memory usage
The memory usage of a DataFrame
(including the index) is shown when calling the info()
. A configuration option, display.memory_usage
(see the list of options), specifies if the DataFrame
’s memory usage will be displayed when invoking the df.info()
method.
For example, the memory usage of the DataFrame
below is shown when calling info()
:
In [1]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]', ...: 'complex128', 'object', 'bool'] ...: In [2]: n = 5000 In [3]: data = {t: np.random.randint(100, size=n).astype(t) for t in dtypes} In [4]: df = pd.DataFrame(data) In [5]: df['categorical'] = df['object'].astype('category') In [6]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999 Data columns (total 8 columns): int64 5000 non-null int64 float64 5000 non-null float64 datetime64[ns] 5000 non-null datetime64[ns] timedelta64[ns] 5000 non-null timedelta64[ns] complex128 5000 non-null complex128 object 5000 non-null object bool 5000 non-null bool categorical 5000 non-null category dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1), object(1), timedelta64[ns](1) memory usage: 289.1+ KB
The +
symbol indicates that the true memory usage could be higher, because pandas does not count the memory used by values in columns with dtype=object
.
Passing memory_usage='deep'
will enable a more accurate memory usage report, accounting for the full usage of the contained objects. This is optional as it can be expensive to do this deeper introspection.
In [7]: df.info(memory_usage='deep') <class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999 Data columns (total 8 columns): int64 5000 non-null int64 float64 5000 non-null float64 datetime64[ns] 5000 non-null datetime64[ns] timedelta64[ns] 5000 non-null timedelta64[ns] complex128 5000 non-null complex128 object 5000 non-null object bool 5000 non-null bool categorical 5000 non-null category dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1), object(1), timedelta64[ns](1) memory usage: 425.6 KB
By default the display option is set to True
but can be explicitly overridden by passing the memory_usage
argument when invoking df.info()
.
The memory usage of each column can be found by calling the memory_usage()
method. This returns a Series
with an index represented by column names and memory usage of each column shown in bytes. For the DataFrame
above, the memory usage of each column and the total memory usage can be found with the memory_usage
method:
In [8]: df.memory_usage() Out[8]: Index 80 int64 40000 float64 40000 datetime64[ns] 40000 timedelta64[ns] 40000 complex128 80000 object 40000 bool 5000 categorical 10920 dtype: int64 # total memory usage of dataframe In [9]: df.memory_usage().sum()
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/user_guide/gotchas.html