pandas.DataFrame.to_dict
-
DataFrame.to_dict(orient='dict', into=<class 'dict'>)
[source] -
Convert the DataFrame to a dictionary.
The type of the key-value pairs can be customized with the parameters (see below).
Parameters: -
orient : str {‘dict’, ‘list’, ‘series’, ‘split’, ‘records’, ‘index’}
-
Determines the type of the values of the dictionary.
- ‘dict’ (default) : dict like {column -> {index -> value}}
- ‘list’ : dict like {column -> [values]}
- ‘series’ : dict like {column -> Series(values)}
- ‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}
- ‘records’ : list like [{column -> value}, … , {column -> value}]
- ‘index’ : dict like {index -> {column -> value}}
Abbreviations are allowed.
s
indicatesseries
andsp
indicatessplit
. -
into : class, default dict
-
The collections.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized.
New in version 0.21.0.
Returns: - dict, list or collections.Mapping
-
Return a collections.Mapping object representing the DataFrame. The resulting transformation depends on the
orient
parameter.
See also
-
DataFrame.from_dict
- Create a DataFrame from a dictionary.
-
DataFrame.to_json
- Convert a DataFrame to JSON format.
Examples
>>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}
You can specify the return orientation.
>>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64}
>>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]}
>>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}]
>>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}}
You can also specify the mapping type.
>>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))])
If you want a
defaultdict
, you need to initialize it:>>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})]
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_dict.html