pandas.read_table
-
pandas.read_table(filepath_or_buffer, sep=False, delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)
[source] -
Read general delimited file into DataFrame.
Deprecated since version 0.24.0.
Use
pandas.read_csv()
instead, passingsep='\t'
if necessary.Also supports optionally iterating or breaking of the file into chunks.
Additional help can be found in the online docs for IO Tools.
Parameters: -
filepath_or_buffer : str, path object, or file-like object
-
Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv.
If you want to pass in a path object, pandas accepts either
pathlib.Path
orpy._path.local.LocalPath
.By file-like object, we refer to objects with a
read()
method, such as a file handler (e.g. via builtinopen
function) orStringIO
. -
sep : str, default ‘\t’ (tab-stop)
-
Delimiter to use. If sep is None, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used and automatically detect the separator by Python’s builtin sniffer tool,
csv.Sniffer
. In addition, separators longer than 1 character and different from'\s+'
will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example:'\r\t'
. -
delimiter : str, default None
-
Alias for sep.
-
header : int, list of int, default ‘infer’
-
Row number(s) to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to
header=0
and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical toheader=None
. Explicitly passheader=0
to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines ifskip_blank_lines=True
, soheader=0
denotes the first line of data rather than the first line of the file. -
names : array-like, optional
-
List of column names to use. If file contains no header row, then you should explicitly pass
header=None
. Duplicates in this list will cause aUserWarning
to be issued. -
index_col : int, sequence or bool, optional
-
Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider
index_col=False
to force pandas to not use the first column as the index (row names). -
usecols : list-like or callable, optional
-
Return a subset of the columns. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in
names
or inferred from the document header row(s). For example, a valid list-likeusecols
parameter would be[0, 1, 2]
or['foo', 'bar', 'baz']
. Element order is ignored, sousecols=[0, 1]
is the same as[1, 0]
. To instantiate a DataFrame fromdata
with element order preserved usepd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]
for columns in['foo', 'bar']
order orpd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]
for['bar', 'foo']
order.If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True. An example of a valid callable argument would be
lambda x: x.upper() in ['AAA', 'BBB', 'DDD']
. Using this parameter results in much faster parsing time and lower memory usage. -
squeeze : bool, default False
-
If the parsed data only contains one column then return a Series.
-
prefix : str, optional
-
Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, …
-
mangle_dupe_cols : bool, default True
-
Duplicate columns will be specified as ‘X’, ‘X.1’, …’X.N’, rather than ‘X’…’X’. Passing in False will cause data to be overwritten if there are duplicate names in the columns.
-
dtype : Type name or dict of column -> type, optional
-
Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32, ‘c’: ‘Int64’} Use
str
orobject
together with suitablena_values
settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. -
engine : {‘c’, ‘python’}, optional
-
Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.
-
converters : dict, optional
-
Dict of functions for converting values in certain columns. Keys can either be integers or column labels.
-
true_values : list, optional
-
Values to consider as True.
-
false_values : list, optional
-
Values to consider as False.
-
skipinitialspace : bool, default False
-
Skip spaces after delimiter.
-
skiprows : list-like, int or callable, optional
-
Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file.
If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be
lambda x: x in [0, 2]
. -
skipfooter : int, default 0
-
Number of lines at bottom of file to skip (Unsupported with engine=’c’).
-
nrows : int, optional
-
Number of rows of file to read. Useful for reading pieces of large files.
-
na_values : scalar, str, list-like, or dict, optional
-
Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’.
-
keep_default_na : bool, default True
-
Whether or not to include the default NaN values when parsing the data. Depending on whether
na_values
is passed in, the behavior is as follows:- If
keep_default_na
is True, andna_values
are specified,na_values
is appended to the default NaN values used for parsing. - If
keep_default_na
is True, andna_values
are not specified, only the default NaN values are used for parsing. - If
keep_default_na
is False, andna_values
are specified, only the NaN values specifiedna_values
are used for parsing. - If
keep_default_na
is False, andna_values
are not specified, no strings will be parsed as NaN.
Note that if
na_filter
is passed in as False, thekeep_default_na
andna_values
parameters will be ignored. - If
-
na_filter : bool, default True
-
Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file.
-
verbose : bool, default False
-
Indicate number of NA values placed in non-numeric columns.
-
skip_blank_lines : bool, default True
-
If True, skip over blank lines rather than interpreting as NaN values.
-
parse_dates : bool or list of int or names or list of lists or dict, default False
-
The behavior is as follows:
- boolean. If True -> try parsing the index.
- list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.
- list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column.
- dict, e.g. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’
If a column or index cannot be represented as an array of datetimes, say because of an unparseable value or a mixture of timezones, the column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use
pd.to_datetime
afterpd.read_csv
. To parse an index or column with a mixture of timezones, specifydate_parser
to be a partially-appliedpandas.to_datetime()
withutc=True
. See Parsing a CSV with mixed Timezones for more.Note: A fast-path exists for iso8601-formatted dates.
-
infer_datetime_format : bool, default False
-
If True and
parse_dates
is enabled, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x. -
keep_date_col : bool, default False
-
If True and
parse_dates
specifies combining multiple columns then keep the original columns. -
date_parser : function, optional
-
Function to use for converting a sequence of string columns to an array of datetime instances. The default uses
dateutil.parser.parser
to do the conversion. Pandas will try to calldate_parser
in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined byparse_dates
) as arguments; 2) concatenate (row-wise) the string values from the columns defined byparse_dates
into a single array and pass that; and 3) calldate_parser
once for each row using one or more strings (corresponding to the columns defined byparse_dates
) as arguments. -
dayfirst : bool, default False
-
DD/MM format dates, international and European format.
-
iterator : bool, default False
-
Return TextFileReader object for iteration or getting chunks with
get_chunk()
. -
chunksize : int, optional
-
Return TextFileReader object for iteration. See the IO Tools docs for more information on
iterator
andchunksize
. -
compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’
-
For on-the-fly decompression of on-disk data. If ‘infer’ and
filepath_or_buffer
is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, or ‘.xz’ (otherwise no decompression). If using ‘zip’, the ZIP file must contain only one data file to be read in. Set to None for no decompression.New in version 0.18.1: support for ‘zip’ and ‘xz’ compression.
-
thousands : str, optional
-
Thousands separator.
-
decimal : str, default ‘.’
-
Character to recognize as decimal point (e.g. use ‘,’ for European data).
-
lineterminator : str (length 1), optional
-
Character to break file into lines. Only valid with C parser.
-
quotechar : str (length 1), optional
-
The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.
-
quoting : int or csv.QUOTE_* instance, default 0
-
Control field quoting behavior per
csv.QUOTE_*
constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). -
doublequote : bool, default True
-
When quotechar is specified and quoting is not
QUOTE_NONE
, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a singlequotechar
element. -
escapechar : str (length 1), optional
-
One-character string used to escape other characters.
-
comment : str, optional
-
Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as
skip_blank_lines=True
), fully commented lines are ignored by the parameterheader
but not byskiprows
. For example, ifcomment='#'
, parsing#empty\na,b,c\n1,2,3
withheader=0
will result in ‘a,b,c’ being treated as the header. -
encoding : str, optional
-
Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings .
-
dialect : str or csv.Dialect, optional
-
If provided, this parameter will override values (default or not) for the following parameters:
delimiter
,doublequote
,escapechar
,skipinitialspace
,quotechar
, andquoting
. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details. -
tupleize_cols : bool, default False
-
Leave a list of tuples on columns as is (default is to convert to a MultiIndex on the columns).
Deprecated since version 0.21.0: This argument will be removed and will always convert to MultiIndex
-
error_bad_lines : bool, default True
-
Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned.
-
warn_bad_lines : bool, default True
-
If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output.
-
delim_whitespace : bool, default False
-
Specifies whether or not whitespace (e.g.
' '
or' '
) will be used as the sep. Equivalent to settingsep='\s+'
. If this option is set to True, nothing should be passed in for thedelimiter
parameter.New in version 0.18.1: support for the Python parser.
-
low_memory : bool, default True
-
Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the
dtype
parameter. Note that the entire file is read into a single DataFrame regardless, use thechunksize
oriterator
parameter to return the data in chunks. (Only valid with C parser). -
memory_map : bool, default False
-
If a filepath is provided for
filepath_or_buffer
, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead. -
float_precision : str, optional
-
Specifies which converter the C engine should use for floating-point values. The options are
None
for the ordinary converter,high
for the high-precision converter, andround_trip
for the round-trip converter.
Returns: - DataFrame or TextParser
-
A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes.
See also
Examples
>>> pd.read_table('data.csv') # doctest: +SKIP
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.read_table.html