pandas.Series.dt.to_period

Series.dt.to_period(*args, **kwargs) [source]

Cast to PeriodArray/Index at a particular frequency.

Converts DatetimeArray/Index to PeriodArray/Index.

Parameters:
freq : string or Offset, optional

One of pandas’ offset strings or an Offset object. Will be inferred by default.

Returns:
PeriodArray/Index
Raises:
ValueError

When converting a DatetimeArray/Index with non-regular values, so that a frequency cannot be inferred.

See also

PeriodIndex
Immutable ndarray holding ordinal values.
DatetimeIndex.to_pydatetime
Return DatetimeIndex as object.

Examples

>>> df = pd.DataFrame({"y": [1,2,3]},
...                   index=pd.to_datetime(["2000-03-31 00:00:00",
...                                         "2000-05-31 00:00:00",
...                                         "2000-08-31 00:00:00"]))
>>> df.index.to_period("M")
PeriodIndex(['2000-03', '2000-05', '2000-08'],
            dtype='period[M]', freq='M')

Infer the daily frequency

>>> idx = pd.date_range("2017-01-01", periods=2)
>>> idx.to_period()
PeriodIndex(['2017-01-01', '2017-01-02'],
            dtype='period[D]', freq='D')

© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.Series.dt.to_period.html