pandas.Series.dt.to_period
-
Series.dt.to_period(*args, **kwargs)
[source] -
Cast to PeriodArray/Index at a particular frequency.
Converts DatetimeArray/Index to PeriodArray/Index.
Parameters: -
freq : string or Offset, optional
-
One of pandas’ offset strings or an Offset object. Will be inferred by default.
Returns: - PeriodArray/Index
Raises: - ValueError
-
When converting a DatetimeArray/Index with non-regular values, so that a frequency cannot be inferred.
See also
-
PeriodIndex
- Immutable ndarray holding ordinal values.
-
DatetimeIndex.to_pydatetime
- Return DatetimeIndex as object.
Examples
>>> df = pd.DataFrame({"y": [1,2,3]}, ... index=pd.to_datetime(["2000-03-31 00:00:00", ... "2000-05-31 00:00:00", ... "2000-08-31 00:00:00"])) >>> df.index.to_period("M") PeriodIndex(['2000-03', '2000-05', '2000-08'], dtype='period[M]', freq='M')
Infer the daily frequency
>>> idx = pd.date_range("2017-01-01", periods=2) >>> idx.to_period() PeriodIndex(['2017-01-01', '2017-01-02'], dtype='period[D]', freq='D')
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.Series.dt.to_period.html