pandas.Series.dt.to_pydatetime

Series.dt.to_pydatetime() [source]

Return the data as an array of native Python datetime objects.

Timezone information is retained if present.

Warning

Python’s datetime uses microsecond resolution, which is lower than pandas (nanosecond). The values are truncated.

Returns:
numpy.ndarray

object dtype array containing native Python datetime objects.

See also

datetime.datetime
Standard library value for a datetime.

Examples

>>> s = pd.Series(pd.date_range('20180310', periods=2))
>>> s
0   2018-03-10
1   2018-03-11
dtype: datetime64[ns]
>>> s.dt.to_pydatetime()
array([datetime.datetime(2018, 3, 10, 0, 0),
       datetime.datetime(2018, 3, 11, 0, 0)], dtype=object)

pandas’ nanosecond precision is truncated to microseconds.

>>> s = pd.Series(pd.date_range('20180310', periods=2, freq='ns'))
>>> s
0   2018-03-10 00:00:00.000000000
1   2018-03-10 00:00:00.000000001
dtype: datetime64[ns]
>>> s.dt.to_pydatetime()
array([datetime.datetime(2018, 3, 10, 0, 0),
       datetime.datetime(2018, 3, 10, 0, 0)], dtype=object)

© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.Series.dt.to_pydatetime.html