pandas.DataFrame.to_numpy
- 
DataFrame.to_numpy(dtype=None, copy=False)[source]
- 
Convert the DataFrame to a NumPy array. New in version 0.24.0. By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are float16andfloat32, the results dtype will befloat32. This may require copying data and coercing values, which may be expensive.Parameters: - 
dtype : str or numpy.dtype, optional
- 
The dtype to pass to numpy.asarray()
- 
copy : bool, default False
- 
Whether to ensure that the returned value is a not a view on another array. Note that copy=Falsedoes not ensure thatto_numpy()is no-copy. Rather,copy=Trueensure that a copy is made, even if not strictly necessary.
 Returns: - 
array : numpy.ndarray
 See also - 
 Series.to_numpy
- Similar method for Series.
 Examples>>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]])With heterogenous data, the lowest common type will have to be used. >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]])For a mix of numeric and non-numeric types, the output array will have object dtype. >>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object)
- 
    © 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
    https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_numpy.html