pandas.arrays.DatetimeArray.tz_convert
- 
DatetimeArray.tz_convert(tz)[source] - 
Convert tz-aware Datetime Array/Index from one time zone to another.
Parameters: - 
tz : string, pytz.timezone, dateutil.tz.tzfile or None - 
Time zone for time. Corresponding timestamps would be converted to this time zone of the Datetime Array/Index. A
tzof None will convert to UTC and remove the timezone information. 
Returns: - 
normalized : same type as self 
Raises: - TypeError
 - 
If Datetime Array/Index is tz-naive.
 
See also
- 
DatetimeIndex.tz - A timezone that has a variable offset from UTC.
 - 
DatetimeIndex.tz_localize - Localize tz-naive DatetimeIndex to a given time zone, or remove timezone from a tz-aware DatetimeIndex.
 
Examples
With the
tzparameter, we can change the DatetimeIndex to other time zones:>>> dti = pd.date_range(start='2014-08-01 09:00', ... freq='H', periods=3, tz='Europe/Berlin')
>>> dti DatetimeIndex(['2014-08-01 09:00:00+02:00', '2014-08-01 10:00:00+02:00', '2014-08-01 11:00:00+02:00'], dtype='datetime64[ns, Europe/Berlin]', freq='H')>>> dti.tz_convert('US/Central') DatetimeIndex(['2014-08-01 02:00:00-05:00', '2014-08-01 03:00:00-05:00', '2014-08-01 04:00:00-05:00'], dtype='datetime64[ns, US/Central]', freq='H')With the
tz=None, we can remove the timezone (after converting to UTC if necessary):>>> dti = pd.date_range(start='2014-08-01 09:00',freq='H', ... periods=3, tz='Europe/Berlin')
>>> dti DatetimeIndex(['2014-08-01 09:00:00+02:00', '2014-08-01 10:00:00+02:00', '2014-08-01 11:00:00+02:00'], dtype='datetime64[ns, Europe/Berlin]', freq='H')>>> dti.tz_convert(None) DatetimeIndex(['2014-08-01 07:00:00', '2014-08-01 08:00:00', '2014-08-01 09:00:00'], dtype='datetime64[ns]', freq='H') - 
 
    © 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
    https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.arrays.DatetimeArray.tz_convert.html