Options and Settings
Overview
pandas has an options system that lets you customize some aspects of its behaviour, display-related options being those the user is most likely to adjust.
Options have a full “dotted-style”, case-insensitive name (e.g. display.max_rows
). You can get/set options directly as attributes of the top-level options
attribute:
In [1]: import pandas as pd In [2]: pd.options.display.max_rows Out[2]: 15 In [3]: pd.options.display.max_rows = 999 In [4]: pd.options.display.max_rows Out[4]: 999
The API is composed of 5 relevant functions, available directly from the pandas
namespace:
-
get_option()
/set_option()
- get/set the value of a single option. -
reset_option()
- reset one or more options to their default value. -
describe_option()
- print the descriptions of one or more options. -
option_context()
- execute a codeblock with a set of options that revert to prior settings after execution.
Note: Developers can check out pandas/core/config.py for more information.
All of the functions above accept a regexp pattern (re.search
style) as an argument, and so passing in a substring will work - as long as it is unambiguous:
In [5]: pd.get_option("display.max_rows") Out[5]: 999 In [6]: pd.set_option("display.max_rows", 101) In [7]: pd.get_option("display.max_rows") Out[7]: 101 In [8]: pd.set_option("max_r", 102) In [9]: pd.get_option("display.max_rows") Out[9]: 102
The following will not work because it matches multiple option names, e.g. display.max_colwidth
, display.max_rows
, display.max_columns
:
In [10]: try: ....: pd.get_option("column") ....: except KeyError as e: ....: print(e) ....: 'Pattern matched multiple keys'
Note: Using this form of shorthand may cause your code to break if new options with similar names are added in future versions.
You can get a list of available options and their descriptions with describe_option
. When called with no argument describe_option
will print out the descriptions for all available options.
Getting and Setting Options
As described above, get_option()
and set_option()
are available from the pandas namespace. To change an option, call set_option('option regex', new_value)
.
In [11]: pd.get_option('mode.sim_interactive') Out[11]: False In [12]: pd.set_option('mode.sim_interactive', True) In [13]: pd.get_option('mode.sim_interactive') Out[13]: True
Note: The option ‘mode.sim_interactive’ is mostly used for debugging purposes.
All options also have a default value, and you can use reset_option
to do just that:
In [14]: pd.get_option("display.max_rows") Out[14]: 60 In [15]: pd.set_option("display.max_rows", 999) In [16]: pd.get_option("display.max_rows") Out[16]: 999 In [17]: pd.reset_option("display.max_rows") In [18]: pd.get_option("display.max_rows") Out[18]: 60
It’s also possible to reset multiple options at once (using a regex):
In [19]: pd.reset_option("^display")
option_context
context manager has been exposed through the top-level API, allowing you to execute code with given option values. Option values are restored automatically when you exit the with
block:
In [20]: with pd.option_context("display.max_rows", 10, "display.max_columns", 5): ....: print(pd.get_option("display.max_rows")) ....: print(pd.get_option("display.max_columns")) ....: 10 5 In [21]: print(pd.get_option("display.max_rows"))
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/user_guide/options.html