pandas.core.resample.Resampler.interpolate
-
Resampler.interpolate(method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', limit_area=None, downcast=None, **kwargs)
[source] -
Interpolate values according to different methods.
New in version 0.18.1.
Please note that only
method='linear'
is supported for DataFrame/Series with a MultiIndex.Parameters: -
method : str, default ‘linear’
-
Interpolation technique to use. One of:
- ‘linear’: Ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes.
- ‘time’: Works on daily and higher resolution data to interpolate given length of interval.
- ‘index’, ‘values’: use the actual numerical values of the index.
- ‘pad’: Fill in NaNs using existing values.
- ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘spline’, ‘barycentric’, ‘polynomial’: Passed to
scipy.interpolate.interp1d
. Both ‘polynomial’ and ‘spline’ require that you also specify anorder
(int), e.g.df.interpolate(method='polynomial', order=4)
. These use the numerical values of the index. - ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’, ‘akima’: Wrappers around the SciPy interpolation methods of similar names. See
Notes
. - ‘from_derivatives’: Refers to
scipy.interpolate.BPoly.from_derivatives
which replaces ‘piecewise_polynomial’ interpolation method in scipy 0.18.
New in version 0.18.1: Added support for the ‘akima’ method. Added interpolate method ‘from_derivatives’ which replaces ‘piecewise_polynomial’ in SciPy 0.18; backwards-compatible with SciPy < 0.18
-
axis : {0 or ‘index’, 1 or ‘columns’, None}, default None
-
Axis to interpolate along.
-
limit : int, optional
-
Maximum number of consecutive NaNs to fill. Must be greater than 0.
-
inplace : bool, default False
-
Update the data in place if possible.
-
limit_direction : {‘forward’, ‘backward’, ‘both’}, default ‘forward’
-
If limit is specified, consecutive NaNs will be filled in this direction.
-
limit_area : {None, ‘inside’, ‘outside’}, default None
-
If limit is specified, consecutive NaNs will be filled with this restriction.
-
None
: No fill restriction. - ‘inside’: Only fill NaNs surrounded by valid values (interpolate).
- ‘outside’: Only fill NaNs outside valid values (extrapolate).
New in version 0.21.0.
-
-
downcast : optional, ‘infer’ or None, defaults to None
-
Downcast dtypes if possible.
- **kwargs
-
Keyword arguments to pass on to the interpolating function.
Returns: - Series or DataFrame
-
Returns the same object type as the caller, interpolated at some or all
NaN
values
See also
-
fillna
- Fill missing values using different methods.
-
scipy.interpolate.Akima1DInterpolator
- Piecewise cubic polynomials (Akima interpolator).
-
scipy.interpolate.BPoly.from_derivatives
- Piecewise polynomial in the Bernstein basis.
-
scipy.interpolate.interp1d
- Interpolate a 1-D function.
-
scipy.interpolate.KroghInterpolator
- Interpolate polynomial (Krogh interpolator).
-
scipy.interpolate.PchipInterpolator
- PCHIP 1-d monotonic cubic interpolation.
-
scipy.interpolate.CubicSpline
- Cubic spline data interpolator.
Notes
The ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’ and ‘akima’ methods are wrappers around the respective SciPy implementations of similar names. These use the actual numerical values of the index. For more information on their behavior, see the SciPy documentation and SciPy tutorial.
Examples
Filling in
NaN
in aSeries
via linear interpolation.>>> s = pd.Series([0, 1, np.nan, 3]) >>> s 0 0.0 1 1.0 2 NaN 3 3.0 dtype: float64 >>> s.interpolate() 0 0.0 1 1.0 2 2.0 3 3.0 dtype: float64
Filling in
NaN
in a Series by padding, but filling at most two consecutiveNaN
at a time.>>> s = pd.Series([np.nan, "single_one", np.nan, ... "fill_two_more", np.nan, np.nan, np.nan, ... 4.71, np.nan]) >>> s 0 NaN 1 single_one 2 NaN 3 fill_two_more 4 NaN 5 NaN 6 NaN 7 4.71 8 NaN dtype: object >>> s.interpolate(method='pad', limit=2) 0 NaN 1 single_one 2 single_one 3 fill_two_more 4 fill_two_more 5 fill_two_more 6 NaN 7 4.71 8 4.71 dtype: object
Filling in
NaN
in a Series via polynomial interpolation or splines: Both ‘polynomial’ and ‘spline’ methods require that you also specify anorder
(int).>>> s = pd.Series([0, 2, np.nan, 8]) >>> s.interpolate(method='polynomial', order=2) 0 0.000000 1 2.000000 2 4.666667 3 8.000000 dtype: float64
Fill the DataFrame forward (that is, going down) along each column using linear interpolation.
Note how the last entry in column ‘a’ is interpolated differently, because there is no entry after it to use for interpolation. Note how the first entry in column ‘b’ remains
NaN
, because there is no entry befofe it to use for interpolation.>>> df = pd.DataFrame([(0.0, np.nan, -1.0, 1.0), ... (np.nan, 2.0, np.nan, np.nan), ... (2.0, 3.0, np.nan, 9.0), ... (np.nan, 4.0, -4.0, 16.0)], ... columns=list('abcd')) >>> df a b c d 0 0.0 NaN -1.0 1.0 1 NaN 2.0 NaN NaN 2 2.0 3.0 NaN 9.0 3 NaN 4.0 -4.0 16.0 >>> df.interpolate(method='linear', limit_direction='forward', axis=0) a b c d 0 0.0 NaN -1.0 1.0 1 1.0 2.0 -2.0 5.0 2 2.0 3.0 -3.0 9.0 3 2.0 4.0 -4.0 16.0
Using polynomial interpolation.
>>> df['d'].interpolate(method='polynomial', order=2) 0 1.0 1 4.0 2 9.0 3 16.0 Name: d, dtype: float64
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.core.resample.Resampler.interpolate.html