pandas.core.groupby.DataFrameGroupBy.boxplot
- 
DataFrameGroupBy.boxplot(subplots=True, column=None, fontsize=None, rot=0, grid=True, ax=None, figsize=None, layout=None, sharex=False, sharey=True, **kwds)[source]
- 
Make box plots from DataFrameGroupBy data. Parameters: - 
grouped : Grouped DataFrame
- subplots :
- 
- 
False- no subplots will be used
- 
True- create a subplot for each group
 
- 
- 
column : column name or list of names, or vector
- 
Can be any valid input to groupby 
- 
fontsize : int or string
- 
rot : label rotation angle
- 
grid : Setting this to True will show the grid
- 
ax : Matplotlib axis object, default None
- 
figsize : A tuple (width, height) in inches
- 
layout : tuple (optional)
- 
(rows, columns) for the layout of the plot 
- 
sharex : bool, default False
- 
Whether x-axes will be shared among subplots New in version 0.23.1. 
- 
sharey : bool, default True
- 
Whether y-axes will be shared among subplots New in version 0.23.1. 
- 
`**kwds` : Keyword Arguments
- 
All other plotting keyword arguments to be passed to matplotlib’s boxplot function 
 Returns: - dict of key/value = group key/DataFrame.boxplot return value
- or DataFrame.boxplot return value in case subplots=figures=False
 Examples>>> import itertools >>> tuples = [t for t in itertools.product(range(1000), range(4))] >>> index = pd.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1']) >>> data = np.random.randn(len(index),4) >>> df = pd.DataFrame(data, columns=list('ABCD'), index=index) >>> >>> grouped = df.groupby(level='lvl1') >>> boxplot_frame_groupby(grouped) >>> >>> grouped = df.unstack(level='lvl1').groupby(level=0, axis=1) >>> boxplot_frame_groupby(grouped, subplots=False)
- 
    © 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
    https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.core.groupby.DataFrameGroupBy.boxplot.html