pandas.core.groupby.DataFrameGroupBy.boxplot
-
DataFrameGroupBy.boxplot(subplots=True, column=None, fontsize=None, rot=0, grid=True, ax=None, figsize=None, layout=None, sharex=False, sharey=True, **kwds)
[source] -
Make box plots from DataFrameGroupBy data.
Parameters: -
grouped : Grouped DataFrame
- subplots :
-
-
False
- no subplots will be used -
True
- create a subplot for each group
-
-
column : column name or list of names, or vector
-
Can be any valid input to groupby
-
fontsize : int or string
-
rot : label rotation angle
-
grid : Setting this to True will show the grid
-
ax : Matplotlib axis object, default None
-
figsize : A tuple (width, height) in inches
-
layout : tuple (optional)
-
(rows, columns) for the layout of the plot
-
sharex : bool, default False
-
Whether x-axes will be shared among subplots
New in version 0.23.1.
-
sharey : bool, default True
-
Whether y-axes will be shared among subplots
New in version 0.23.1.
-
`**kwds` : Keyword Arguments
-
All other plotting keyword arguments to be passed to matplotlib’s boxplot function
Returns: - dict of key/value = group key/DataFrame.boxplot return value
- or DataFrame.boxplot return value in case subplots=figures=False
Examples
>>> import itertools >>> tuples = [t for t in itertools.product(range(1000), range(4))] >>> index = pd.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1']) >>> data = np.random.randn(len(index),4) >>> df = pd.DataFrame(data, columns=list('ABCD'), index=index) >>> >>> grouped = df.groupby(level='lvl1') >>> boxplot_frame_groupby(grouped) >>> >>> grouped = df.unstack(level='lvl1').groupby(level=0, axis=1) >>> boxplot_frame_groupby(grouped, subplots=False)
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.core.groupby.DataFrameGroupBy.boxplot.html