pandas.api.types.infer_dtype
-
pandas.api.types.infer_dtype()
-
Efficiently infer the type of a passed val, or list-like array of values. Return a string describing the type.
Parameters: -
value : scalar, list, ndarray, or pandas type
-
skipna : bool, default False
-
Ignore NaN values when inferring the type.
New in version 0.21.0.
Returns: - string describing the common type of the input data.
- Results can include:
- - string
- - unicode
- - bytes
- - floating
- - integer
- - mixed-integer
- - mixed-integer-float
- - decimal
- - complex
- - categorical
- - boolean
- - datetime64
- - datetime
- - date
- - timedelta64
- - timedelta
- - time
- - period
- - mixed
Raises: - TypeError if ndarray-like but cannot infer the dtype
Notes
- ‘mixed’ is the catchall for anything that is not otherwise specialized
- ‘mixed-integer-float’ are floats and integers
- ‘mixed-integer’ are integers mixed with non-integers
Examples
>>> infer_dtype(['foo', 'bar']) 'string'
>>> infer_dtype(['a', np.nan, 'b'], skipna=True) 'string'
>>> infer_dtype(['a', np.nan, 'b'], skipna=False) 'mixed'
>>> infer_dtype([b'foo', b'bar']) 'bytes'
>>> infer_dtype([1, 2, 3]) 'integer'
>>> infer_dtype([1, 2, 3.5]) 'mixed-integer-float'
>>> infer_dtype([1.0, 2.0, 3.5]) 'floating'
>>> infer_dtype(['a', 1]) 'mixed-integer'
>>> infer_dtype([Decimal(1), Decimal(2.0)]) 'decimal'
>>> infer_dtype([True, False]) 'boolean'
>>> infer_dtype([True, False, np.nan]) 'mixed'
>>> infer_dtype([pd.Timestamp('20130101')]) 'datetime'
>>> infer_dtype([datetime.date(2013, 1, 1)]) 'date'
>>> infer_dtype([np.datetime64('2013-01-01')]) 'datetime64'
>>> infer_dtype([datetime.timedelta(0, 1, 1)]) 'timedelta'
>>> infer_dtype(pd.Series(list('aabc')).astype('category')) 'categorical'
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.api.types.infer_dtype.html