torch.slogdet
- 
torch.slogdet(input) -> (Tensor, Tensor)
- 
Calculates the sign and log absolute value of the determinant(s) of a square matrix or batches of square matrices. Note torch.slogdet()is deprecated. Please usetorch.linalg.slogdet()instead.Note If inputhas zero determinant, this returns(0, -inf).Note Backward through slogdet()internally uses SVD results wheninputis not invertible. In this case, double backward throughslogdet()will be unstable in wheninputdoesn’t have distinct singular values. Seesvd()for details.- Parameters
- 
input (Tensor) – the input tensor of size (*, n, n)where*is zero or more batch dimensions.
- Returns
- 
A namedtuple (sign, logabsdet) containing the sign of the determinant, and the log value of the absolute determinant. 
 Example: >>> A = torch.randn(3, 3) >>> A tensor([[ 0.0032, -0.2239, -1.1219], [-0.6690, 0.1161, 0.4053], [-1.6218, -0.9273, -0.0082]]) >>> torch.det(A) tensor(-0.7576) >>> torch.logdet(A) tensor(nan) >>> torch.slogdet(A) torch.return_types.slogdet(sign=tensor(-1.), logabsdet=tensor(-0.2776))
    © 2019 Torch Contributors
Licensed under the 3-clause BSD License.
    https://pytorch.org/docs/1.8.0/generated/torch.slogdet.html