torch.matrix_rank
-
torch.matrix_rank(input, tol=None, symmetric=False, *, out=None) → Tensor -
Returns the numerical rank of a 2-D tensor. The method to compute the matrix rank is done using SVD by default. If
symmetricisTrue, theninputis assumed to be symmetric, and the computation of the rank is done by obtaining the eigenvalues.tolis the threshold below which the singular values (or the eigenvalues whensymmetricisTrue) are considered to be 0. Iftolis not specified,tolis set toS.max() * max(S.size()) * epswhereSis the singular values (or the eigenvalues whensymmetricisTrue), andepsis the epsilon value for the datatype ofinput.Note
torch.matrix_rank()is deprecated. Please usetorch.linalg.matrix_rank()instead. The parametersymmetricwas renamed intorch.linalg.matrix_rank()tohermitian.- Parameters
- Keyword Arguments
-
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.eye(10) >>> torch.matrix_rank(a) tensor(10) >>> b = torch.eye(10) >>> b[0, 0] = 0 >>> torch.matrix_rank(b) tensor(9)
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.matrix_rank.html