torch.matrix_rank
-
torch.matrix_rank(input, tol=None, symmetric=False, *, out=None) → Tensor
-
Returns the numerical rank of a 2-D tensor. The method to compute the matrix rank is done using SVD by default. If
symmetric
isTrue
, theninput
is assumed to be symmetric, and the computation of the rank is done by obtaining the eigenvalues.tol
is the threshold below which the singular values (or the eigenvalues whensymmetric
isTrue
) are considered to be 0. Iftol
is not specified,tol
is set toS.max() * max(S.size()) * eps
whereS
is the singular values (or the eigenvalues whensymmetric
isTrue
), andeps
is the epsilon value for the datatype ofinput
.Note
torch.matrix_rank()
is deprecated. Please usetorch.linalg.matrix_rank()
instead. The parametersymmetric
was renamed intorch.linalg.matrix_rank()
tohermitian
.- Parameters
- Keyword Arguments
-
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.eye(10) >>> torch.matrix_rank(a) tensor(10) >>> b = torch.eye(10) >>> b[0, 0] = 0 >>> torch.matrix_rank(b) tensor(9)
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.matrix_rank.html