TransformerDecoder
-
class torch.nn.TransformerDecoder(decoder_layer, num_layers, norm=None)
[source] -
TransformerDecoder is a stack of N decoder layers
- Parameters
-
- decoder_layer – an instance of the TransformerDecoderLayer() class (required).
- num_layers – the number of sub-decoder-layers in the decoder (required).
- norm – the layer normalization component (optional).
- Examples::
-
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) >>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6) >>> memory = torch.rand(10, 32, 512) >>> tgt = torch.rand(20, 32, 512) >>> out = transformer_decoder(tgt, memory)
-
forward(tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None)
[source] -
Pass the inputs (and mask) through the decoder layer in turn.
- Parameters
-
- tgt – the sequence to the decoder (required).
- memory – the sequence from the last layer of the encoder (required).
- tgt_mask – the mask for the tgt sequence (optional).
- memory_mask – the mask for the memory sequence (optional).
- tgt_key_padding_mask – the mask for the tgt keys per batch (optional).
- memory_key_padding_mask – the mask for the memory keys per batch (optional).
- Shape:
-
see the docs in Transformer class.
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.TransformerDecoder.html