MaxPool3d
-
class torch.nn.MaxPool3d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
[source] -
Applies a 3D max pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size , output and
kernel_size
can be precisely described as:If
padding
is non-zero, then the input is implicitly zero-padded on both sides forpadding
number of points.dilation
controls the spacing between the kernel points. It is harder to describe, but this link has a nice visualization of whatdilation
does.Note
When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding or the input. Sliding windows that would start in the right padded region are ignored.
The parameters
kernel_size
,stride
,padding
,dilation
can either be:- a single
int
– in which case the same value is used for the depth, height and width dimension - a
tuple
of three ints – in which case, the firstint
is used for the depth dimension, the secondint
for the height dimension and the thirdint
for the width dimension
- Parameters
-
- kernel_size – the size of the window to take a max over
-
stride – the stride of the window. Default value is
kernel_size
- padding – implicit zero padding to be added on all three sides
- dilation – a parameter that controls the stride of elements in the window
-
return_indices – if
True
, will return the max indices along with the outputs. Useful fortorch.nn.MaxUnpool3d
later -
ceil_mode – when True, will use
ceil
instead offloor
to compute the output shape
- Shape:
-
- Input:
-
Output: , where
Examples:
>>> # pool of square window of size=3, stride=2 >>> m = nn.MaxPool3d(3, stride=2) >>> # pool of non-square window >>> m = nn.MaxPool3d((3, 2, 2), stride=(2, 1, 2)) >>> input = torch.randn(20, 16, 50,44, 31) >>> output = m(input)
- a single
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.MaxPool3d.html