torch.quantize_per_tensor
-
torch.quantize_per_tensor(input, scale, zero_point, dtype) → Tensor
-
Converts a float tensor to a quantized tensor with given scale and zero point.
- Parameters
-
- input (Tensor) – float tensor to quantize
- scale (float) – scale to apply in quantization formula
- zero_point (int) – offset in integer value that maps to float zero
-
dtype (
torch.dtype
) – the desired data type of returned tensor. Has to be one of the quantized dtypes:torch.quint8
,torch.qint8
,torch.qint32
- Returns
-
A newly quantized tensor
- Return type
Example:
>>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8) tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10) >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8).int_repr() tensor([ 0, 10, 20, 30], dtype=torch.uint8)
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.quantize_per_tensor.html