torch.searchsorted
-
torch.searchsorted(sorted_sequence, values, *, out_int32=False, right=False, out=None) → Tensor -
Find the indices from the innermost dimension of
sorted_sequencesuch that, if the corresponding values invalueswere inserted before the indices, the order of the corresponding innermost dimension withinsorted_sequencewould be preserved. Return a new tensor with the same size asvalues. Ifrightis False (default), then the left boundary ofsorted_sequenceis closed. More formally, the returned index satisfies the following rules:sorted_sequencerightreturned index satisfies
1-D
False
sorted_sequence[i-1] < values[m][n]...[l][x] <= sorted_sequence[i]1-D
True
sorted_sequence[i-1] <= values[m][n]...[l][x] < sorted_sequence[i]N-D
False
sorted_sequence[m][n]...[l][i-1] < values[m][n]...[l][x] <= sorted_sequence[m][n]...[l][i]N-D
True
sorted_sequence[m][n]...[l][i-1] <= values[m][n]...[l][x] < sorted_sequence[m][n]...[l][i]- Parameters
- Keyword Arguments
-
- out_int32 (bool, optional) – indicate the output data type. torch.int32 if True, torch.int64 otherwise. Default value is False, i.e. default output data type is torch.int64.
-
right (bool, optional) – if False, return the first suitable location that is found. If True, return the last such index. If no suitable index found, return 0 for non-numerical value (eg. nan, inf) or the size of innermost dimension within
sorted_sequence(one pass the last index of the innermost dimension). In other words, if False, gets the lower bound index for each value invalueson the corresponding innermost dimension of thesorted_sequence. If True, gets the upper bound index instead. Default value is False. -
out (Tensor, optional) – the output tensor, must be the same size as
valuesif provided.
Note
If your use case is always 1-D sorted sequence,
torch.bucketize()is preferred, because it has fewer dimension checks resulting in slightly better performance.Example:
>>> sorted_sequence = torch.tensor([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]]) >>> sorted_sequence tensor([[ 1, 3, 5, 7, 9], [ 2, 4, 6, 8, 10]]) >>> values = torch.tensor([[3, 6, 9], [3, 6, 9]]) >>> values tensor([[3, 6, 9], [3, 6, 9]]) >>> torch.searchsorted(sorted_sequence, values) tensor([[1, 3, 4], [1, 2, 4]]) >>> torch.searchsorted(sorted_sequence, values, right=True) tensor([[2, 3, 5], [1, 3, 4]]) >>> sorted_sequence_1d = torch.tensor([1, 3, 5, 7, 9]) >>> sorted_sequence_1d tensor([1, 3, 5, 7, 9]) >>> torch.searchsorted(sorted_sequence_1d, values) tensor([[1, 3, 4], [1, 3, 4]])
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.searchsorted.html