torch.float_power
-
torch.float_power(input, exponent, *, out=None) → Tensor
-
Raises
input
to the power ofexponent
, elementwise, in double precision. If neither input is complex returns atorch.float64
tensor, and if one or more inputs is complex returns atorch.complex128
tensor.Note
This function always computes in double precision, unlike
torch.pow()
, which implements more typical type promotion. This is useful when the computation needs to be performed in a wider or more precise dtype, or the results of the computation may contain fractional values not representable in the input dtypes, like when an integer base is raised to a negative integer exponent.- Parameters
- Keyword Arguments
-
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randint(10, (4,)) >>> a tensor([6, 4, 7, 1]) >>> torch.float_power(a, 2) tensor([36., 16., 49., 1.], dtype=torch.float64) >>> a = torch.arange(1, 5) >>> a tensor([ 1, 2, 3, 4]) >>> exp = torch.tensor([2, -3, 4, -5]) >>> exp tensor([ 2, -3, 4, -5]) >>> torch.float_power(a, exp) tensor([1.0000e+00, 1.2500e-01, 8.1000e+01, 9.7656e-04], dtype=torch.float64)
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.float_power.html