TransformerEncoderLayer
-
class torch.nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='relu')
[source] -
TransformerEncoderLayer is made up of self-attn and feedforward network. This standard encoder layer is based on the paper “Attention Is All You Need”. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application.
- Parameters
-
- d_model – the number of expected features in the input (required).
- nhead – the number of heads in the multiheadattention models (required).
- dim_feedforward – the dimension of the feedforward network model (default=2048).
- dropout – the dropout value (default=0.1).
- activation – the activation function of intermediate layer, relu or gelu (default=relu).
- Examples::
-
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) >>> src = torch.rand(10, 32, 512) >>> out = encoder_layer(src)
-
forward(src, src_mask=None, src_key_padding_mask=None)
[source] -
Pass the input through the encoder layer.
- Parameters
-
- src – the sequence to the encoder layer (required).
- src_mask – the mask for the src sequence (optional).
- src_key_padding_mask – the mask for the src keys per batch (optional).
- Shape:
-
see the docs in Transformer class.
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.TransformerEncoderLayer.html