TransformerEncoderLayer

class torch.nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='relu') [source]

TransformerEncoderLayer is made up of self-attn and feedforward network. This standard encoder layer is based on the paper “Attention Is All You Need”. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application.

Parameters
  • d_model – the number of expected features in the input (required).
  • nhead – the number of heads in the multiheadattention models (required).
  • dim_feedforward – the dimension of the feedforward network model (default=2048).
  • dropout – the dropout value (default=0.1).
  • activation – the activation function of intermediate layer, relu or gelu (default=relu).
Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> src = torch.rand(10, 32, 512)
>>> out = encoder_layer(src)
forward(src, src_mask=None, src_key_padding_mask=None) [source]

Pass the input through the encoder layer.

Parameters
  • src – the sequence to the encoder layer (required).
  • src_mask – the mask for the src sequence (optional).
  • src_key_padding_mask – the mask for the src keys per batch (optional).
Shape:

see the docs in Transformer class.

© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.TransformerEncoderLayer.html