Probability distributions - torch.distributions
The distributions
package contains parameterizable probability distributions and sampling functions. This allows the construction of stochastic computation graphs and stochastic gradient estimators for optimization. This package generally follows the design of the TensorFlow Distributions package.
It is not possible to directly backpropagate through random samples. However, there are two main methods for creating surrogate functions that can be backpropagated through. These are the score function estimator/likelihood ratio estimator/REINFORCE and the pathwise derivative estimator. REINFORCE is commonly seen as the basis for policy gradient methods in reinforcement learning, and the pathwise derivative estimator is commonly seen in the reparameterization trick in variational autoencoders. Whilst the score function only requires the value of samples , the pathwise derivative requires the derivative . The next sections discuss these two in a reinforcement learning example. For more details see Gradient Estimation Using Stochastic Computation Graphs .
Score function
When the probability density function is differentiable with respect to its parameters, we only need sample()
and log_prob()
to implement REINFORCE:
where are the parameters, is the learning rate, is the reward and is the probability of taking action in state given policy .
In practice we would sample an action from the output of a network, apply this action in an environment, and then use log_prob
to construct an equivalent loss function. Note that we use a negative because optimizers use gradient descent, whilst the rule above assumes gradient ascent. With a categorical policy, the code for implementing REINFORCE would be as follows:
probs = policy_network(state) # Note that this is equivalent to what used to be called multinomial m = Categorical(probs) action = m.sample() next_state, reward = env.step(action) loss = -m.log_prob(action) * reward loss.backward()
Pathwise derivative
The other way to implement these stochastic/policy gradients would be to use the reparameterization trick from the rsample()
method, where the parameterized random variable can be constructed via a parameterized deterministic function of a parameter-free random variable. The reparameterized sample therefore becomes differentiable. The code for implementing the pathwise derivative would be as follows:
params = policy_network(state) m = Normal(*params) # Any distribution with .has_rsample == True could work based on the application action = m.rsample() next_state, reward = env.step(action) # Assuming that reward is differentiable loss = -reward loss.backward()
Distribution
-
class torch.distributions.distribution.Distribution(batch_shape=torch.Size([]), event_shape=torch.Size([]), validate_args=None)
[source] -
Bases:
object
Distribution is the abstract base class for probability distributions.
-
property arg_constraints
-
Returns a dictionary from argument names to
Constraint
objects that should be satisfied by each argument of this distribution. Args that are not tensors need not appear in this dict.
-
property batch_shape
-
Returns the shape over which parameters are batched.
-
cdf(value)
[source] -
Returns the cumulative density/mass function evaluated at
value
.- Parameters
-
value (Tensor) –
-
entropy()
[source] -
Returns entropy of distribution, batched over batch_shape.
- Returns
-
Tensor of shape batch_shape.
-
enumerate_support(expand=True)
[source] -
Returns tensor containing all values supported by a discrete distribution. The result will enumerate over dimension 0, so the shape of the result will be
(cardinality,) + batch_shape + event_shape
(whereevent_shape = ()
for univariate distributions).Note that this enumerates over all batched tensors in lock-step
[[0, 0], [1, 1], …]
. Withexpand=False
, enumeration happens along dim 0, but with the remaining batch dimensions being singleton dimensions,[[0], [1], ..
.To iterate over the full Cartesian product use
itertools.product(m.enumerate_support())
.- Parameters
-
expand (bool) – whether to expand the support over the batch dims to match the distribution’s
batch_shape
. - Returns
-
Tensor iterating over dimension 0.
-
property event_shape
-
Returns the shape of a single sample (without batching).
-
expand(batch_shape, _instance=None)
[source] -
Returns a new distribution instance (or populates an existing instance provided by a derived class) with batch dimensions expanded to
batch_shape
. This method callsexpand
on the distribution’s parameters. As such, this does not allocate new memory for the expanded distribution instance. Additionally, this does not repeat any args checking or parameter broadcasting in__init__.py
, when an instance is first created.- Parameters
-
- batch_shape (torch.Size) – the desired expanded size.
-
_instance – new instance provided by subclasses that need to override
.expand
.
- Returns
-
New distribution instance with batch dimensions expanded to
batch_size
.
-
icdf(value)
[source] -
Returns the inverse cumulative density/mass function evaluated at
value
.- Parameters
-
value (Tensor) –
-
log_prob(value)
[source] -
Returns the log of the probability density/mass function evaluated at
value
.- Parameters
-
value (Tensor) –
-
property mean
-
Returns the mean of the distribution.
-
perplexity()
[source] -
Returns perplexity of distribution, batched over batch_shape.
- Returns
-
Tensor of shape batch_shape.
-
rsample(sample_shape=torch.Size([]))
[source] -
Generates a sample_shape shaped reparameterized sample or sample_shape shaped batch of reparameterized samples if the distribution parameters are batched.
-
sample(sample_shape=torch.Size([]))
[source] -
Generates a sample_shape shaped sample or sample_shape shaped batch of samples if the distribution parameters are batched.
-
sample_n(n)
[source] -
Generates n samples or n batches of samples if the distribution parameters are batched.
-
static set_default_validate_args(value)
[source] -
Sets whether validation is enabled or disabled.
The default behavior mimics Python’s
assert
statement: validation is on by default, but is disabled if Python is run in optimized mode (viapython -O
). Validation may be expensive, so you may want to disable it once a model is working.- Parameters
-
value (bool) – Whether to enable validation.
-
property stddev
-
Returns the standard deviation of the distribution.
-
property support
-
Returns a
Constraint
object representing this distribution’s support.
-
property variance
-
Returns the variance of the distribution.
-
ExponentialFamily
-
class torch.distributions.exp_family.ExponentialFamily(batch_shape=torch.Size([]), event_shape=torch.Size([]), validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
ExponentialFamily is the abstract base class for probability distributions belonging to an exponential family, whose probability mass/density function has the form is defined below
where denotes the natural parameters, denotes the sufficient statistic, is the log normalizer function for a given family and is the carrier measure.
Note
This class is an intermediary between the
Distribution
class and distributions which belong to an exponential family mainly to check the correctness of the.entropy()
and analytic KL divergence methods. We use this class to compute the entropy and KL divergence using the AD framework and Bregman divergences (courtesy of: Frank Nielsen and Richard Nock, Entropies and Cross-entropies of Exponential Families).-
entropy()
[source] -
Method to compute the entropy using Bregman divergence of the log normalizer.
-
Bernoulli
-
class torch.distributions.bernoulli.Bernoulli(probs=None, logits=None, validate_args=None)
[source] -
Bases:
torch.distributions.exp_family.ExponentialFamily
Creates a Bernoulli distribution parameterized by
probs
orlogits
(but not both).Samples are binary (0 or 1). They take the value
1
with probabilityp
and0
with probability1 - p
.Example:
>>> m = Bernoulli(torch.tensor([0.3])) >>> m.sample() # 30% chance 1; 70% chance 0 tensor([ 0.])
- Parameters
-
arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)}
-
entropy()
[source]
-
enumerate_support(expand=True)
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_enumerate_support = True
-
log_prob(value)
[source]
-
logits
[source]
-
property mean
-
property param_shape
-
probs
[source]
-
sample(sample_shape=torch.Size([]))
[source]
-
support = Boolean()
-
property variance
Beta
-
class torch.distributions.beta.Beta(concentration1, concentration0, validate_args=None)
[source] -
Bases:
torch.distributions.exp_family.ExponentialFamily
Beta distribution parameterized by
concentration1
andconcentration0
.Example:
>>> m = Beta(torch.tensor([0.5]), torch.tensor([0.5])) >>> m.sample() # Beta distributed with concentration concentration1 and concentration0 tensor([ 0.1046])
- Parameters
-
arg_constraints = {'concentration0': GreaterThan(lower_bound=0.0), 'concentration1': GreaterThan(lower_bound=0.0)}
-
property concentration0
-
property concentration1
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
log_prob(value)
[source]
-
property mean
-
rsample(sample_shape=())
[source]
-
support = Interval(lower_bound=0.0, upper_bound=1.0)
-
property variance
Binomial
-
class torch.distributions.binomial.Binomial(total_count=1, probs=None, logits=None, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Creates a Binomial distribution parameterized by
total_count
and eitherprobs
orlogits
(but not both).total_count
must be broadcastable withprobs
/logits
.Example:
>>> m = Binomial(100, torch.tensor([0 , .2, .8, 1])) >>> x = m.sample() tensor([ 0., 22., 71., 100.]) >>> m = Binomial(torch.tensor([[5.], [10.]]), torch.tensor([0.5, 0.8])) >>> x = m.sample() tensor([[ 4., 5.], [ 7., 6.]])
- Parameters
-
arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0), 'total_count': IntegerGreaterThan(lower_bound=0)}
-
enumerate_support(expand=True)
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_enumerate_support = True
-
log_prob(value)
[source]
-
logits
[source]
-
property mean
-
property param_shape
-
probs
[source]
-
sample(sample_shape=torch.Size([]))
[source]
-
property support
-
property variance
Categorical
-
class torch.distributions.categorical.Categorical(probs=None, logits=None, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Creates a categorical distribution parameterized by either
probs
orlogits
(but not both).Note
It is equivalent to the distribution that
torch.multinomial()
samples from.Samples are integers from where
K
isprobs.size(-1)
.If
probs
is 1-dimensional with length-K
, each element is the relative probability of sampling the class at that index.If
probs
is N-dimensional, the first N-1 dimensions are treated as a batch of relative probability vectors.Note
The
probs
argument must be non-negative, finite and have a non-zero sum, and it will be normalized to sum to 1 along the last dimension. attr:probs
will return this normalized value. Thelogits
argument will be interpreted as unnormalized log probabilities and can therefore be any real number. It will likewise be normalized so that the resulting probabilities sum to 1 along the last dimension. attr:logits
will return this normalized value.See also:
torch.multinomial()
Example:
>>> m = Categorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ])) >>> m.sample() # equal probability of 0, 1, 2, 3 tensor(3)
- Parameters
-
arg_constraints = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()}
-
entropy()
[source]
-
enumerate_support(expand=True)
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_enumerate_support = True
-
log_prob(value)
[source]
-
logits
[source]
-
property mean
-
property param_shape
-
probs
[source]
-
sample(sample_shape=torch.Size([]))
[source]
-
property support
-
property variance
Cauchy
-
class torch.distributions.cauchy.Cauchy(loc, scale, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Samples from a Cauchy (Lorentz) distribution. The distribution of the ratio of independent normally distributed random variables with means
0
follows a Cauchy distribution.Example:
>>> m = Cauchy(torch.tensor([0.0]), torch.tensor([1.0])) >>> m.sample() # sample from a Cauchy distribution with loc=0 and scale=1 tensor([ 2.3214])
- Parameters
-
arg_constraints = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}
-
cdf(value)
[source]
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
icdf(value)
[source]
-
log_prob(value)
[source]
-
property mean
-
rsample(sample_shape=torch.Size([]))
[source]
-
support = Real()
-
property variance
Chi2
-
class torch.distributions.chi2.Chi2(df, validate_args=None)
[source] -
Bases:
torch.distributions.gamma.Gamma
Creates a Chi2 distribution parameterized by shape parameter
df
. This is exactly equivalent toGamma(alpha=0.5*df, beta=0.5)
Example:
>>> m = Chi2(torch.tensor([1.0])) >>> m.sample() # Chi2 distributed with shape df=1 tensor([ 0.1046])
-
arg_constraints = {'df': GreaterThan(lower_bound=0.0)}
-
property df
-
expand(batch_shape, _instance=None)
[source]
-
ContinuousBernoulli
-
class torch.distributions.continuous_bernoulli.ContinuousBernoulli(probs=None, logits=None, lims=(0.499, 0.501), validate_args=None)
[source] -
Bases:
torch.distributions.exp_family.ExponentialFamily
Creates a continuous Bernoulli distribution parameterized by
probs
orlogits
(but not both).The distribution is supported in [0, 1] and parameterized by ‘probs’ (in (0,1)) or ‘logits’ (real-valued). Note that, unlike the Bernoulli, ‘probs’ does not correspond to a probability and ‘logits’ does not correspond to log-odds, but the same names are used due to the similarity with the Bernoulli. See [1] for more details.
Example:
>>> m = ContinuousBernoulli(torch.tensor([0.3])) >>> m.sample() tensor([ 0.2538])
- Parameters
[1] The continuous Bernoulli: fixing a pervasive error in variational autoencoders, Loaiza-Ganem G and Cunningham JP, NeurIPS 2019. https://arxiv.org/abs/1907.06845
-
arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)}
-
cdf(value)
[source]
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
icdf(value)
[source]
-
log_prob(value)
[source]
-
logits
[source]
-
property mean
-
property param_shape
-
probs
[source]
-
rsample(sample_shape=torch.Size([]))
[source]
-
sample(sample_shape=torch.Size([]))
[source]
-
property stddev
-
support = Interval(lower_bound=0.0, upper_bound=1.0)
-
property variance
Dirichlet
-
class torch.distributions.dirichlet.Dirichlet(concentration, validate_args=None)
[source] -
Bases:
torch.distributions.exp_family.ExponentialFamily
Creates a Dirichlet distribution parameterized by concentration
concentration
.Example:
>>> m = Dirichlet(torch.tensor([0.5, 0.5])) >>> m.sample() # Dirichlet distributed with concentrarion concentration tensor([ 0.1046, 0.8954])
- Parameters
-
concentration (Tensor) – concentration parameter of the distribution (often referred to as alpha)
-
arg_constraints = {'concentration': IndependentConstraint(GreaterThan(lower_bound=0.0), 1)}
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
log_prob(value)
[source]
-
property mean
-
rsample(sample_shape=())
[source]
-
support = Simplex()
-
property variance
Exponential
-
class torch.distributions.exponential.Exponential(rate, validate_args=None)
[source] -
Bases:
torch.distributions.exp_family.ExponentialFamily
Creates a Exponential distribution parameterized by
rate
.Example:
>>> m = Exponential(torch.tensor([1.0])) >>> m.sample() # Exponential distributed with rate=1 tensor([ 0.1046])
-
arg_constraints = {'rate': GreaterThan(lower_bound=0.0)}
-
cdf(value)
[source]
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
icdf(value)
[source]
-
log_prob(value)
[source]
-
property mean
-
rsample(sample_shape=torch.Size([]))
[source]
-
property stddev
-
support = GreaterThan(lower_bound=0.0)
-
property variance
-
FisherSnedecor
-
class torch.distributions.fishersnedecor.FisherSnedecor(df1, df2, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Creates a Fisher-Snedecor distribution parameterized by
df1
anddf2
.Example:
>>> m = FisherSnedecor(torch.tensor([1.0]), torch.tensor([2.0])) >>> m.sample() # Fisher-Snedecor-distributed with df1=1 and df2=2 tensor([ 0.2453])
- Parameters
-
arg_constraints = {'df1': GreaterThan(lower_bound=0.0), 'df2': GreaterThan(lower_bound=0.0)}
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
log_prob(value)
[source]
-
property mean
-
rsample(sample_shape=torch.Size([]))
[source]
-
support = GreaterThan(lower_bound=0.0)
-
property variance
Gamma
-
class torch.distributions.gamma.Gamma(concentration, rate, validate_args=None)
[source] -
Bases:
torch.distributions.exp_family.ExponentialFamily
Creates a Gamma distribution parameterized by shape
concentration
andrate
.Example:
>>> m = Gamma(torch.tensor([1.0]), torch.tensor([1.0])) >>> m.sample() # Gamma distributed with concentration=1 and rate=1 tensor([ 0.1046])
- Parameters
-
arg_constraints = {'concentration': GreaterThan(lower_bound=0.0), 'rate': GreaterThan(lower_bound=0.0)}
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
log_prob(value)
[source]
-
property mean
-
rsample(sample_shape=torch.Size([]))
[source]
-
support = GreaterThan(lower_bound=0.0)
-
property variance
Geometric
-
class torch.distributions.geometric.Geometric(probs=None, logits=None, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Creates a Geometric distribution parameterized by
probs
, whereprobs
is the probability of success of Bernoulli trials. It represents the probability that in Bernoulli trials, the first trials failed, before seeing a success.Samples are non-negative integers [0, ).
Example:
>>> m = Geometric(torch.tensor([0.3])) >>> m.sample() # underlying Bernoulli has 30% chance 1; 70% chance 0 tensor([ 2.])
- Parameters
-
arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)}
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
log_prob(value)
[source]
-
logits
[source]
-
property mean
-
probs
[source]
-
sample(sample_shape=torch.Size([]))
[source]
-
support = IntegerGreaterThan(lower_bound=0)
-
property variance
Gumbel
-
class torch.distributions.gumbel.Gumbel(loc, scale, validate_args=None)
[source] -
Bases:
torch.distributions.transformed_distribution.TransformedDistribution
Samples from a Gumbel Distribution.
Examples:
>>> m = Gumbel(torch.tensor([1.0]), torch.tensor([2.0])) >>> m.sample() # sample from Gumbel distribution with loc=1, scale=2 tensor([ 1.0124])
- Parameters
-
arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
log_prob(value)
[source]
-
property mean
-
property stddev
-
support = Real()
-
property variance
HalfCauchy
-
class torch.distributions.half_cauchy.HalfCauchy(scale, validate_args=None)
[source] -
Bases:
torch.distributions.transformed_distribution.TransformedDistribution
Creates a half-Cauchy distribution parameterized by
scale
where:X ~ Cauchy(0, scale) Y = |X| ~ HalfCauchy(scale)
Example:
>>> m = HalfCauchy(torch.tensor([1.0])) >>> m.sample() # half-cauchy distributed with scale=1 tensor([ 2.3214])
-
arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'scale': GreaterThan(lower_bound=0.0)}
-
cdf(value)
[source]
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
icdf(prob)
[source]
-
log_prob(value)
[source]
-
property mean
-
property scale
-
support = GreaterThan(lower_bound=0.0)
-
property variance
-
HalfNormal
-
class torch.distributions.half_normal.HalfNormal(scale, validate_args=None)
[source] -
Bases:
torch.distributions.transformed_distribution.TransformedDistribution
Creates a half-normal distribution parameterized by
scale
where:X ~ Normal(0, scale) Y = |X| ~ HalfNormal(scale)
Example:
>>> m = HalfNormal(torch.tensor([1.0])) >>> m.sample() # half-normal distributed with scale=1 tensor([ 0.1046])
-
arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'scale': GreaterThan(lower_bound=0.0)}
-
cdf(value)
[source]
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
icdf(prob)
[source]
-
log_prob(value)
[source]
-
property mean
-
property scale
-
support = GreaterThan(lower_bound=0.0)
-
property variance
-
Independent
-
class torch.distributions.independent.Independent(base_distribution, reinterpreted_batch_ndims, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Reinterprets some of the batch dims of a distribution as event dims.
This is mainly useful for changing the shape of the result of
log_prob()
. For example to create a diagonal Normal distribution with the same shape as a Multivariate Normal distribution (so they are interchangeable), you can:>>> loc = torch.zeros(3) >>> scale = torch.ones(3) >>> mvn = MultivariateNormal(loc, scale_tril=torch.diag(scale)) >>> [mvn.batch_shape, mvn.event_shape] [torch.Size(()), torch.Size((3,))] >>> normal = Normal(loc, scale) >>> [normal.batch_shape, normal.event_shape] [torch.Size((3,)), torch.Size(())] >>> diagn = Independent(normal, 1) >>> [diagn.batch_shape, diagn.event_shape] [torch.Size(()), torch.Size((3,))]
- Parameters
-
- base_distribution (torch.distributions.distribution.Distribution) – a base distribution
- reinterpreted_batch_ndims (int) – the number of batch dims to reinterpret as event dims
-
arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {}
-
entropy()
[source]
-
enumerate_support(expand=True)
[source]
-
expand(batch_shape, _instance=None)
[source]
-
property has_enumerate_support
-
property has_rsample
-
log_prob(value)
[source]
-
property mean
-
rsample(sample_shape=torch.Size([]))
[source]
-
sample(sample_shape=torch.Size([]))
[source]
-
property support
-
property variance
Kumaraswamy
-
class torch.distributions.kumaraswamy.Kumaraswamy(concentration1, concentration0, validate_args=None)
[source] -
Bases:
torch.distributions.transformed_distribution.TransformedDistribution
Samples from a Kumaraswamy distribution.
Example:
>>> m = Kumaraswamy(torch.Tensor([1.0]), torch.Tensor([1.0])) >>> m.sample() # sample from a Kumaraswamy distribution with concentration alpha=1 and beta=1 tensor([ 0.1729])
- Parameters
-
arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'concentration0': GreaterThan(lower_bound=0.0), 'concentration1': GreaterThan(lower_bound=0.0)}
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
property mean
-
support = Interval(lower_bound=0.0, upper_bound=1.0)
-
property variance
LKJCholesky
-
class torch.distributions.lkj_cholesky.LKJCholesky(dim, concentration=1.0, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
LKJ distribution for lower Cholesky factor of correlation matrices. The distribution is controlled by
concentration
parameter to make the probability of the correlation matrix generated from a Cholesky factor propotional to . Because of that, whenconcentration == 1
, we have a uniform distribution over Cholesky factors of correlation matrices. Note that this distribution samples the Cholesky factor of correlation matrices and not the correlation matrices themselves and thereby differs slightly from the derivations in [1] for theLKJCorr
distribution. For sampling, this uses the Onion method from [1] Section 3.L ~ LKJCholesky(dim, concentration) X = L @ L’ ~ LKJCorr(dim, concentration)
Example:
>>> l = LKJCholesky(3, 0.5) >>> l.sample() # l @ l.T is a sample of a correlation 3x3 matrix tensor([[ 1.0000, 0.0000, 0.0000], [ 0.3516, 0.9361, 0.0000], [-0.1899, 0.4748, 0.8593]])
- Parameters
References
[1]
Generating random correlation matrices based on vines and extended onion method
, Daniel Lewandowski, Dorota Kurowicka, Harry Joe.-
arg_constraints = {'concentration': GreaterThan(lower_bound=0.0)}
-
expand(batch_shape, _instance=None)
[source]
-
log_prob(value)
[source]
-
sample(sample_shape=torch.Size([]))
[source]
-
support = CorrCholesky()
Laplace
-
class torch.distributions.laplace.Laplace(loc, scale, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Creates a Laplace distribution parameterized by
loc
andscale
.Example:
>>> m = Laplace(torch.tensor([0.0]), torch.tensor([1.0])) >>> m.sample() # Laplace distributed with loc=0, scale=1 tensor([ 0.1046])
- Parameters
-
arg_constraints = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}
-
cdf(value)
[source]
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
icdf(value)
[source]
-
log_prob(value)
[source]
-
property mean
-
rsample(sample_shape=torch.Size([]))
[source]
-
property stddev
-
support = Real()
-
property variance
LogNormal
-
class torch.distributions.log_normal.LogNormal(loc, scale, validate_args=None)
[source] -
Bases:
torch.distributions.transformed_distribution.TransformedDistribution
Creates a log-normal distribution parameterized by
loc
andscale
where:X ~ Normal(loc, scale) Y = exp(X) ~ LogNormal(loc, scale)
Example:
>>> m = LogNormal(torch.tensor([0.0]), torch.tensor([1.0])) >>> m.sample() # log-normal distributed with mean=0 and stddev=1 tensor([ 0.1046])
- Parameters
-
arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
property loc
-
property mean
-
property scale
-
support = GreaterThan(lower_bound=0.0)
-
property variance
LowRankMultivariateNormal
-
class torch.distributions.lowrank_multivariate_normal.LowRankMultivariateNormal(loc, cov_factor, cov_diag, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Creates a multivariate normal distribution with covariance matrix having a low-rank form parameterized by
cov_factor
andcov_diag
:covariance_matrix = cov_factor @ cov_factor.T + cov_diag
Example
>>> m = LowRankMultivariateNormal(torch.zeros(2), torch.tensor([[1.], [0.]]), torch.ones(2)) >>> m.sample() # normally distributed with mean=`[0,0]`, cov_factor=`[[1],[0]]`, cov_diag=`[1,1]` tensor([-0.2102, -0.5429])
- Parameters
-
-
loc (Tensor) – mean of the distribution with shape
batch_shape + event_shape
-
cov_factor (Tensor) – factor part of low-rank form of covariance matrix with shape
batch_shape + event_shape + (rank,)
-
cov_diag (Tensor) – diagonal part of low-rank form of covariance matrix with shape
batch_shape + event_shape
-
loc (Tensor) – mean of the distribution with shape
Note
The computation for determinant and inverse of covariance matrix is avoided when
cov_factor.shape[1] << cov_factor.shape[0]
thanks to Woodbury matrix identity and matrix determinant lemma. Thanks to these formulas, we just need to compute the determinant and inverse of the small size “capacitance” matrix:capacitance = I + cov_factor.T @ inv(cov_diag) @ cov_factor
-
arg_constraints = {'cov_diag': IndependentConstraint(GreaterThan(lower_bound=0.0), 1), 'cov_factor': IndependentConstraint(Real(), 2), 'loc': IndependentConstraint(Real(), 1)}
-
covariance_matrix
[source]
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
log_prob(value)
[source]
-
property mean
-
precision_matrix
[source]
-
rsample(sample_shape=torch.Size([]))
[source]
-
scale_tril
[source]
-
support = IndependentConstraint(Real(), 1)
-
variance
[source]
MixtureSameFamily
-
class torch.distributions.mixture_same_family.MixtureSameFamily(mixture_distribution, component_distribution, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
The
MixtureSameFamily
distribution implements a (batch of) mixture distribution where all component are from different parameterizations of the same distribution type. It is parameterized by aCategorical
“selecting distribution” (overk
component) and a component distribution, i.e., aDistribution
with a rightmost batch shape (equal to[k]
) which indexes each (batch of) component.Examples:
# Construct Gaussian Mixture Model in 1D consisting of 5 equally # weighted normal distributions >>> mix = D.Categorical(torch.ones(5,)) >>> comp = D.Normal(torch.randn(5,), torch.rand(5,)) >>> gmm = MixtureSameFamily(mix, comp) # Construct Gaussian Mixture Modle in 2D consisting of 5 equally # weighted bivariate normal distributions >>> mix = D.Categorical(torch.ones(5,)) >>> comp = D.Independent(D.Normal( torch.randn(5,2), torch.rand(5,2)), 1) >>> gmm = MixtureSameFamily(mix, comp) # Construct a batch of 3 Gaussian Mixture Models in 2D each # consisting of 5 random weighted bivariate normal distributions >>> mix = D.Categorical(torch.rand(3,5)) >>> comp = D.Independent(D.Normal( torch.randn(3,5,2), torch.rand(3,5,2)), 1) >>> gmm = MixtureSameFamily(mix, comp)
- Parameters
-
-
mixture_distribution –
torch.distributions.Categorical
-like instance. Manages the probability of selecting component. The number of categories must match the rightmost batch dimension of thecomponent_distribution
. Must have either scalarbatch_shape
orbatch_shape
matchingcomponent_distribution.batch_shape[:-1]
-
component_distribution –
torch.distributions.Distribution
-like instance. Right-most batch dimension indexes component.
-
mixture_distribution –
-
arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {}
-
cdf(x)
[source]
-
property component_distribution
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = False
-
log_prob(x)
[source]
-
property mean
-
property mixture_distribution
-
sample(sample_shape=torch.Size([]))
[source]
-
property support
-
property variance
Multinomial
-
class torch.distributions.multinomial.Multinomial(total_count=1, probs=None, logits=None, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Creates a Multinomial distribution parameterized by
total_count
and eitherprobs
orlogits
(but not both). The innermost dimension ofprobs
indexes over categories. All other dimensions index over batches.Note that
total_count
need not be specified if onlylog_prob()
is called (see example below)Note
The
probs
argument must be non-negative, finite and have a non-zero sum, and it will be normalized to sum to 1 along the last dimension. attr:probs
will return this normalized value. Thelogits
argument will be interpreted as unnormalized log probabilities and can therefore be any real number. It will likewise be normalized so that the resulting probabilities sum to 1 along the last dimension. attr:logits
will return this normalized value.-
sample()
requires a single sharedtotal_count
for all parameters and samples. -
log_prob()
allows differenttotal_count
for each parameter and sample.
Example:
>>> m = Multinomial(100, torch.tensor([ 1., 1., 1., 1.])) >>> x = m.sample() # equal probability of 0, 1, 2, 3 tensor([ 21., 24., 30., 25.]) >>> Multinomial(probs=torch.tensor([1., 1., 1., 1.])).log_prob(x) tensor([-4.1338])
- Parameters
-
arg_constraints = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()}
-
expand(batch_shape, _instance=None)
[source]
-
log_prob(value)
[source]
-
property logits
-
property mean
-
property param_shape
-
property probs
-
sample(sample_shape=torch.Size([]))
[source]
-
property support
-
total_count: int = None
-
property variance
-
MultivariateNormal
-
class torch.distributions.multivariate_normal.MultivariateNormal(loc, covariance_matrix=None, precision_matrix=None, scale_tril=None, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Creates a multivariate normal (also called Gaussian) distribution parameterized by a mean vector and a covariance matrix.
The multivariate normal distribution can be parameterized either in terms of a positive definite covariance matrix or a positive definite precision matrix or a lower-triangular matrix with positive-valued diagonal entries, such that . This triangular matrix can be obtained via e.g. Cholesky decomposition of the covariance.
Example
>>> m = MultivariateNormal(torch.zeros(2), torch.eye(2)) >>> m.sample() # normally distributed with mean=`[0,0]` and covariance_matrix=`I` tensor([-0.2102, -0.5429])
- Parameters
Note
Only one of
covariance_matrix
orprecision_matrix
orscale_tril
can be specified.Using
scale_tril
will be more efficient: all computations internally are based onscale_tril
. Ifcovariance_matrix
orprecision_matrix
is passed instead, it is only used to compute the corresponding lower triangular matrices using a Cholesky decomposition.-
arg_constraints = {'covariance_matrix': PositiveDefinite(), 'loc': IndependentConstraint(Real(), 1), 'precision_matrix': PositiveDefinite(), 'scale_tril': LowerCholesky()}
-
covariance_matrix
[source]
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
log_prob(value)
[source]
-
property mean
-
precision_matrix
[source]
-
rsample(sample_shape=torch.Size([]))
[source]
-
scale_tril
[source]
-
support = IndependentConstraint(Real(), 1)
-
property variance
NegativeBinomial
-
class torch.distributions.negative_binomial.NegativeBinomial(total_count, probs=None, logits=None, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Creates a Negative Binomial distribution, i.e. distribution of the number of successful independent and identical Bernoulli trials before
total_count
failures are achieved. The probability of failure of each Bernoulli trial isprobs
.- Parameters
-
arg_constraints = {'logits': Real(), 'probs': HalfOpenInterval(lower_bound=0.0, upper_bound=1.0), 'total_count': GreaterThanEq(lower_bound=0)}
-
expand(batch_shape, _instance=None)
[source]
-
log_prob(value)
[source]
-
logits
[source]
-
property mean
-
property param_shape
-
probs
[source]
-
sample(sample_shape=torch.Size([]))
[source]
-
support = IntegerGreaterThan(lower_bound=0)
-
property variance
Normal
-
class torch.distributions.normal.Normal(loc, scale, validate_args=None)
[source] -
Bases:
torch.distributions.exp_family.ExponentialFamily
Creates a normal (also called Gaussian) distribution parameterized by
loc
andscale
.Example:
>>> m = Normal(torch.tensor([0.0]), torch.tensor([1.0])) >>> m.sample() # normally distributed with loc=0 and scale=1 tensor([ 0.1046])
- Parameters
-
arg_constraints = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}
-
cdf(value)
[source]
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
icdf(value)
[source]
-
log_prob(value)
[source]
-
property mean
-
rsample(sample_shape=torch.Size([]))
[source]
-
sample(sample_shape=torch.Size([]))
[source]
-
property stddev
-
support = Real()
-
property variance
OneHotCategorical
-
class torch.distributions.one_hot_categorical.OneHotCategorical(probs=None, logits=None, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Creates a one-hot categorical distribution parameterized by
probs
orlogits
.Samples are one-hot coded vectors of size
probs.size(-1)
.Note
The
probs
argument must be non-negative, finite and have a non-zero sum, and it will be normalized to sum to 1 along the last dimension. attr:probs
will return this normalized value. Thelogits
argument will be interpreted as unnormalized log probabilities and can therefore be any real number. It will likewise be normalized so that the resulting probabilities sum to 1 along the last dimension. attr:logits
will return this normalized value.See also:
torch.distributions.Categorical()
for specifications ofprobs
andlogits
.Example:
>>> m = OneHotCategorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ])) >>> m.sample() # equal probability of 0, 1, 2, 3 tensor([ 0., 0., 0., 1.])
- Parameters
-
arg_constraints = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()}
-
entropy()
[source]
-
enumerate_support(expand=True)
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_enumerate_support = True
-
log_prob(value)
[source]
-
property logits
-
property mean
-
property param_shape
-
property probs
-
sample(sample_shape=torch.Size([]))
[source]
-
support = OneHot()
-
property variance
Pareto
-
class torch.distributions.pareto.Pareto(scale, alpha, validate_args=None)
[source] -
Bases:
torch.distributions.transformed_distribution.TransformedDistribution
Samples from a Pareto Type 1 distribution.
Example:
>>> m = Pareto(torch.tensor([1.0]), torch.tensor([1.0])) >>> m.sample() # sample from a Pareto distribution with scale=1 and alpha=1 tensor([ 1.5623])
- Parameters
-
arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'alpha': GreaterThan(lower_bound=0.0), 'scale': GreaterThan(lower_bound=0.0)}
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
property mean
-
property support
-
property variance
Poisson
-
class torch.distributions.poisson.Poisson(rate, validate_args=None)
[source] -
Bases:
torch.distributions.exp_family.ExponentialFamily
Creates a Poisson distribution parameterized by
rate
, the rate parameter.Samples are nonnegative integers, with a pmf given by
Example:
>>> m = Poisson(torch.tensor([4])) >>> m.sample() tensor([ 3.])
- Parameters
-
rate (Number, Tensor) – the rate parameter
-
arg_constraints = {'rate': GreaterThan(lower_bound=0.0)}
-
expand(batch_shape, _instance=None)
[source]
-
log_prob(value)
[source]
-
property mean
-
sample(sample_shape=torch.Size([]))
[source]
-
support = IntegerGreaterThan(lower_bound=0)
-
property variance
RelaxedBernoulli
-
class torch.distributions.relaxed_bernoulli.RelaxedBernoulli(temperature, probs=None, logits=None, validate_args=None)
[source] -
Bases:
torch.distributions.transformed_distribution.TransformedDistribution
Creates a RelaxedBernoulli distribution, parametrized by
temperature
, and eitherprobs
orlogits
(but not both). This is a relaxed version of theBernoulli
distribution, so the values are in (0, 1), and has reparametrizable samples.Example:
>>> m = RelaxedBernoulli(torch.tensor([2.2]), torch.tensor([0.1, 0.2, 0.3, 0.99])) >>> m.sample() tensor([ 0.2951, 0.3442, 0.8918, 0.9021])
- Parameters
-
arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)}
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
property logits
-
property probs
-
support = Interval(lower_bound=0.0, upper_bound=1.0)
-
property temperature
LogitRelaxedBernoulli
-
class torch.distributions.relaxed_bernoulli.LogitRelaxedBernoulli(temperature, probs=None, logits=None, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Creates a LogitRelaxedBernoulli distribution parameterized by
probs
orlogits
(but not both), which is the logit of a RelaxedBernoulli distribution.Samples are logits of values in (0, 1). See [1] for more details.
- Parameters
[1] The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables (Maddison et al, 2017)
[2] Categorical Reparametrization with Gumbel-Softmax (Jang et al, 2017)
-
arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)}
-
expand(batch_shape, _instance=None)
[source]
-
log_prob(value)
[source]
-
logits
[source]
-
property param_shape
-
probs
[source]
-
rsample(sample_shape=torch.Size([]))
[source]
-
support = Real()
RelaxedOneHotCategorical
-
class torch.distributions.relaxed_categorical.RelaxedOneHotCategorical(temperature, probs=None, logits=None, validate_args=None)
[source] -
Bases:
torch.distributions.transformed_distribution.TransformedDistribution
Creates a RelaxedOneHotCategorical distribution parametrized by
temperature
, and eitherprobs
orlogits
. This is a relaxed version of theOneHotCategorical
distribution, so its samples are on simplex, and are reparametrizable.Example:
>>> m = RelaxedOneHotCategorical(torch.tensor([2.2]), torch.tensor([0.1, 0.2, 0.3, 0.4])) >>> m.sample() tensor([ 0.1294, 0.2324, 0.3859, 0.2523])
- Parameters
-
arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()}
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
property logits
-
property probs
-
support = Simplex()
-
property temperature
StudentT
-
class torch.distributions.studentT.StudentT(df, loc=0.0, scale=1.0, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Creates a Student’s t-distribution parameterized by degree of freedom
df
, meanloc
and scalescale
.Example:
>>> m = StudentT(torch.tensor([2.0])) >>> m.sample() # Student's t-distributed with degrees of freedom=2 tensor([ 0.1046])
- Parameters
-
arg_constraints = {'df': GreaterThan(lower_bound=0.0), 'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
log_prob(value)
[source]
-
property mean
-
rsample(sample_shape=torch.Size([]))
[source]
-
support = Real()
-
property variance
TransformedDistribution
-
class torch.distributions.transformed_distribution.TransformedDistribution(base_distribution, transforms, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Extension of the Distribution class, which applies a sequence of Transforms to a base distribution. Let f be the composition of transforms applied:
X ~ BaseDistribution Y = f(X) ~ TransformedDistribution(BaseDistribution, f) log p(Y) = log p(X) + log |det (dX/dY)|
Note that the
.event_shape
of aTransformedDistribution
is the maximum shape of its base distribution and its transforms, since transforms can introduce correlations among events.An example for the usage of
TransformedDistribution
would be:# Building a Logistic Distribution # X ~ Uniform(0, 1) # f = a + b * logit(X) # Y ~ f(X) ~ Logistic(a, b) base_distribution = Uniform(0, 1) transforms = [SigmoidTransform().inv, AffineTransform(loc=a, scale=b)] logistic = TransformedDistribution(base_distribution, transforms)
For more examples, please look at the implementations of
Gumbel
,HalfCauchy
,HalfNormal
,LogNormal
,Pareto
,Weibull
,RelaxedBernoulli
andRelaxedOneHotCategorical
-
arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {}
-
cdf(value)
[source] -
Computes the cumulative distribution function by inverting the transform(s) and computing the score of the base distribution.
-
expand(batch_shape, _instance=None)
[source]
-
property has_rsample
-
icdf(value)
[source] -
Computes the inverse cumulative distribution function using transform(s) and computing the score of the base distribution.
-
log_prob(value)
[source] -
Scores the sample by inverting the transform(s) and computing the score using the score of the base distribution and the log abs det jacobian.
-
rsample(sample_shape=torch.Size([]))
[source] -
Generates a sample_shape shaped reparameterized sample or sample_shape shaped batch of reparameterized samples if the distribution parameters are batched. Samples first from base distribution and applies
transform()
for every transform in the list.
-
sample(sample_shape=torch.Size([]))
[source] -
Generates a sample_shape shaped sample or sample_shape shaped batch of samples if the distribution parameters are batched. Samples first from base distribution and applies
transform()
for every transform in the list.
-
property support
-
Uniform
-
class torch.distributions.uniform.Uniform(low, high, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
Generates uniformly distributed random samples from the half-open interval
[low, high)
.Example:
>>> m = Uniform(torch.tensor([0.0]), torch.tensor([5.0])) >>> m.sample() # uniformly distributed in the range [0.0, 5.0) tensor([ 2.3418])
- Parameters
-
arg_constraints = {'high': Dependent(), 'low': Dependent()}
-
cdf(value)
[source]
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
has_rsample = True
-
icdf(value)
[source]
-
log_prob(value)
[source]
-
property mean
-
rsample(sample_shape=torch.Size([]))
[source]
-
property stddev
-
property support
-
property variance
VonMises
-
class torch.distributions.von_mises.VonMises(loc, concentration, validate_args=None)
[source] -
Bases:
torch.distributions.distribution.Distribution
A circular von Mises distribution.
This implementation uses polar coordinates. The
loc
andvalue
args can be any real number (to facilitate unconstrained optimization), but are interpreted as angles modulo 2 pi.- Example::
-
>>> m = dist.VonMises(torch.tensor([1.0]), torch.tensor([1.0])) >>> m.sample() # von Mises distributed with loc=1 and concentration=1 tensor([1.9777])
- Parameters
-
- loc (torch.Tensor) – an angle in radians.
- concentration (torch.Tensor) – concentration parameter
-
arg_constraints = {'concentration': GreaterThan(lower_bound=0.0), 'loc': Real()}
-
expand(batch_shape)
[source]
-
has_rsample = False
-
log_prob(value)
[source]
-
property mean
-
The provided mean is the circular one.
-
sample(sample_shape=torch.Size([]))
[source] -
The sampling algorithm for the von Mises distribution is based on the following paper: Best, D. J., and Nicholas I. Fisher. “Efficient simulation of the von Mises distribution.” Applied Statistics (1979): 152-157.
-
support = Real()
-
variance
[source] -
The provided variance is the circular one.
Weibull
-
class torch.distributions.weibull.Weibull(scale, concentration, validate_args=None)
[source] -
Bases:
torch.distributions.transformed_distribution.TransformedDistribution
Samples from a two-parameter Weibull distribution.
Example
>>> m = Weibull(torch.tensor([1.0]), torch.tensor([1.0])) >>> m.sample() # sample from a Weibull distribution with scale=1, concentration=1 tensor([ 0.4784])
- Parameters
-
arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'concentration': GreaterThan(lower_bound=0.0), 'scale': GreaterThan(lower_bound=0.0)}
-
entropy()
[source]
-
expand(batch_shape, _instance=None)
[source]
-
property mean
-
support = GreaterThan(lower_bound=0.0)
-
property variance
KL Divergence
-
torch.distributions.kl.kl_divergence(p, q)
[source] -
Compute Kullback-Leibler divergence between two distributions.
- Parameters
-
-
p (Distribution) – A
Distribution
object. -
q (Distribution) – A
Distribution
object.
-
p (Distribution) – A
- Returns
-
A batch of KL divergences of shape
batch_shape
. - Return type
- Raises
-
NotImplementedError – If the distribution types have not been registered via
register_kl()
.
-
torch.distributions.kl.register_kl(type_p, type_q)
[source] -
Decorator to register a pairwise function with
kl_divergence()
. Usage:@register_kl(Normal, Normal) def kl_normal_normal(p, q): # insert implementation here
Lookup returns the most specific (type,type) match ordered by subclass. If the match is ambiguous, a
RuntimeWarning
is raised. For example to resolve the ambiguous situation:@register_kl(BaseP, DerivedQ) def kl_version1(p, q): ... @register_kl(DerivedP, BaseQ) def kl_version2(p, q): ...
you should register a third most-specific implementation, e.g.:
register_kl(DerivedP, DerivedQ)(kl_version1) # Break the tie.
Transforms
-
class torch.distributions.transforms.Transform(cache_size=0)
[source] -
Abstract class for invertable transformations with computable log det jacobians. They are primarily used in
torch.distributions.TransformedDistribution
.Caching is useful for transforms whose inverses are either expensive or numerically unstable. Note that care must be taken with memoized values since the autograd graph may be reversed. For example while the following works with or without caching:
y = t(x) t.log_abs_det_jacobian(x, y).backward() # x will receive gradients.
However the following will error when caching due to dependency reversal:
y = t(x) z = t.inv(y) grad(z.sum(), [y]) # error because z is x
Derived classes should implement one or both of
_call()
or_inverse()
. Derived classes that setbijective=True
should also implementlog_abs_det_jacobian()
.- Parameters
-
cache_size (int) – Size of cache. If zero, no caching is done. If one, the latest single value is cached. Only 0 and 1 are supported.
- Variables
-
-
~Transform.domain (
Constraint
) – The constraint representing valid inputs to this transform. -
~Transform.codomain (
Constraint
) – The constraint representing valid outputs to this transform which are inputs to the inverse transform. -
~Transform.bijective (bool) – Whether this transform is bijective. A transform
t
is bijective ifft.inv(t(x)) == x
andt(t.inv(y)) == y
for everyx
in the domain andy
in the codomain. Transforms that are not bijective should at least maintain the weaker pseudoinverse propertiest(t.inv(t(x)) == t(x)
andt.inv(t(t.inv(y))) == t.inv(y)
. - ~Transform.sign (int or Tensor) – For bijective univariate transforms, this should be +1 or -1 depending on whether transform is monotone increasing or decreasing.
-
~Transform.domain (
-
property inv
-
Returns the inverse
Transform
of this transform. This should satisfyt.inv.inv is t
.
-
property sign
-
Returns the sign of the determinant of the Jacobian, if applicable. In general this only makes sense for bijective transforms.
-
log_abs_det_jacobian(x, y)
[source] -
Computes the log det jacobian
log |dy/dx|
given input and output.
-
forward_shape(shape)
[source] -
Infers the shape of the forward computation, given the input shape. Defaults to preserving shape.
-
inverse_shape(shape)
[source] -
Infers the shapes of the inverse computation, given the output shape. Defaults to preserving shape.
-
class torch.distributions.transforms.ComposeTransform(parts, cache_size=0)
[source] -
Composes multiple transforms in a chain. The transforms being composed are responsible for caching.
-
class torch.distributions.transforms.IndependentTransform(base_transform, reinterpreted_batch_ndims, cache_size=0)
[source] -
Wrapper around another transform to treat
reinterpreted_batch_ndims
-many extra of the right most dimensions as dependent. This has no effect on the forward or backward transforms, but does sum outreinterpreted_batch_ndims
-many of the rightmost dimensions inlog_abs_det_jacobian()
.
-
class torch.distributions.transforms.ReshapeTransform(in_shape, out_shape, cache_size=0)
[source] -
Unit Jacobian transform to reshape the rightmost part of a tensor.
Note that
in_shape
andout_shape
must have the same number of elements, just as fortorch.Tensor.reshape()
.- Parameters
-
- in_shape (torch.Size) – The input event shape.
- out_shape (torch.Size) – The output event shape.
-
class torch.distributions.transforms.ExpTransform(cache_size=0)
[source] -
Transform via the mapping .
-
class torch.distributions.transforms.PowerTransform(exponent, cache_size=0)
[source] -
Transform via the mapping .
-
class torch.distributions.transforms.SigmoidTransform(cache_size=0)
[source] -
Transform via the mapping and .
-
class torch.distributions.transforms.TanhTransform(cache_size=0)
[source] -
Transform via the mapping .
It is equivalent to
` ComposeTransform([AffineTransform(0., 2.), SigmoidTransform(), AffineTransform(-1., 2.)]) `
However this might not be numerically stable, thus it is recommended to useTanhTransform
instead.Note that one should use
cache_size=1
when it comes toNaN/Inf
values.
-
class torch.distributions.transforms.AbsTransform(cache_size=0)
[source] -
Transform via the mapping .
-
class torch.distributions.transforms.AffineTransform(loc, scale, event_dim=0, cache_size=0)
[source] -
Transform via the pointwise affine mapping .
-
class torch.distributions.transforms.CorrCholeskyTransform(cache_size=0)
[source] -
Transforms an uncontrained real vector with length into the Cholesky factor of a D-dimension correlation matrix. This Cholesky factor is a lower triangular matrix with positive diagonals and unit Euclidean norm for each row. The transform is processed as follows:
- First we convert x into a lower triangular matrix in row order.
- For each row of the lower triangular part, we apply a signed version of class
StickBreakingTransform
to transform into a unit Euclidean length vector using the following steps: - Scales into the interval domain: . - Transforms into an unsigned domain: . - Applies . - Transforms back into signed domain: .
-
class torch.distributions.transforms.SoftmaxTransform(cache_size=0)
[source] -
Transform from unconstrained space to the simplex via then normalizing.
This is not bijective and cannot be used for HMC. However this acts mostly coordinate-wise (except for the final normalization), and thus is appropriate for coordinate-wise optimization algorithms.
-
class torch.distributions.transforms.StickBreakingTransform(cache_size=0)
[source] -
Transform from unconstrained space to the simplex of one additional dimension via a stick-breaking process.
This transform arises as an iterated sigmoid transform in a stick-breaking construction of the
Dirichlet
distribution: the first logit is transformed via sigmoid to the first probability and the probability of everything else, and then the process recurses.This is bijective and appropriate for use in HMC; however it mixes coordinates together and is less appropriate for optimization.
-
class torch.distributions.transforms.LowerCholeskyTransform(cache_size=0)
[source] -
Transform from unconstrained matrices to lower-triangular matrices with nonnegative diagonal entries.
This is useful for parameterizing positive definite matrices in terms of their Cholesky factorization.
-
class torch.distributions.transforms.StackTransform(tseq, dim=0, cache_size=0)
[source] -
Transform functor that applies a sequence of transforms
tseq
component-wise to each submatrix atdim
in a way compatible withtorch.stack()
.- Example::
-
x = torch.stack([torch.range(1, 10), torch.range(1, 10)], dim=1) t = StackTransform([ExpTransform(), identity_transform], dim=1) y = t(x)
Constraints
The following constraints are implemented:
constraints.boolean
constraints.cat
constraints.corr_cholesky
constraints.dependent
constraints.greater_than(lower_bound)
constraints.greater_than_eq(lower_bound)
constraints.independent(constraint, reinterpreted_batch_ndims)
constraints.integer_interval(lower_bound, upper_bound)
constraints.interval(lower_bound, upper_bound)
constraints.less_than(upper_bound)
constraints.lower_cholesky
constraints.lower_triangular
constraints.multinomial
constraints.nonnegative_integer
constraints.one_hot
constraints.positive_definite
constraints.positive_integer
constraints.positive
constraints.real_vector
constraints.real
constraints.simplex
constraints.stack
constraints.unit_interval
-
class torch.distributions.constraints.Constraint
[source] -
Abstract base class for constraints.
A constraint object represents a region over which a variable is valid, e.g. within which a variable can be optimized.
- Variables
-
check(value)
[source] -
Returns a byte tensor of
sample_shape + batch_shape
indicating whether each event in value satisfies this constraint.
-
torch.distributions.constraints.dependent_property
-
alias of
torch.distributions.constraints._DependentProperty
-
torch.distributions.constraints.independent
-
alias of
torch.distributions.constraints._IndependentConstraint
-
torch.distributions.constraints.integer_interval
-
alias of
torch.distributions.constraints._IntegerInterval
-
torch.distributions.constraints.greater_than
-
alias of
torch.distributions.constraints._GreaterThan
-
torch.distributions.constraints.greater_than_eq
-
alias of
torch.distributions.constraints._GreaterThanEq
-
torch.distributions.constraints.less_than
-
alias of
torch.distributions.constraints._LessThan
-
torch.distributions.constraints.multinomial
-
alias of
torch.distributions.constraints._Multinomial
-
torch.distributions.constraints.interval
-
alias of
torch.distributions.constraints._Interval
-
torch.distributions.constraints.half_open_interval
-
alias of
torch.distributions.constraints._HalfOpenInterval
-
torch.distributions.constraints.cat
-
alias of
torch.distributions.constraints._Cat
-
torch.distributions.constraints.stack
-
alias of
torch.distributions.constraints._Stack
Constraint Registry
PyTorch provides two global ConstraintRegistry
objects that link Constraint
objects to Transform
objects. These objects both input constraints and return transforms, but they have different guarantees on bijectivity.
-
biject_to(constraint)
looks up a bijectiveTransform
fromconstraints.real
to the givenconstraint
. The returned transform is guaranteed to have.bijective = True
and should implement.log_abs_det_jacobian()
. -
transform_to(constraint)
looks up a not-necessarily bijectiveTransform
fromconstraints.real
to the givenconstraint
. The returned transform is not guaranteed to implement.log_abs_det_jacobian()
.
The transform_to()
registry is useful for performing unconstrained optimization on constrained parameters of probability distributions, which are indicated by each distribution’s .arg_constraints
dict. These transforms often overparameterize a space in order to avoid rotation; they are thus more suitable for coordinate-wise optimization algorithms like Adam:
loc = torch.zeros(100, requires_grad=True) unconstrained = torch.zeros(100, requires_grad=True) scale = transform_to(Normal.arg_constraints['scale'])(unconstrained) loss = -Normal(loc, scale).log_prob(data).sum()
The biject_to()
registry is useful for Hamiltonian Monte Carlo, where samples from a probability distribution with constrained .support
are propagated in an unconstrained space, and algorithms are typically rotation invariant.:
dist = Exponential(rate) unconstrained = torch.zeros(100, requires_grad=True) sample = biject_to(dist.support)(unconstrained) potential_energy = -dist.log_prob(sample).sum()
Note
An example where transform_to
and biject_to
differ is constraints.simplex
: transform_to(constraints.simplex)
returns a SoftmaxTransform
that simply exponentiates and normalizes its inputs; this is a cheap and mostly coordinate-wise operation appropriate for algorithms like SVI. In contrast, biject_to(constraints.simplex)
returns a StickBreakingTransform
that bijects its input down to a one-fewer-dimensional space; this a more expensive less numerically stable transform but is needed for algorithms like HMC.
The biject_to
and transform_to
objects can be extended by user-defined constraints and transforms using their .register()
method either as a function on singleton constraints:
transform_to.register(my_constraint, my_transform)
or as a decorator on parameterized constraints:
@transform_to.register(MyConstraintClass) def my_factory(constraint): assert isinstance(constraint, MyConstraintClass) return MyTransform(constraint.param1, constraint.param2)
You can create your own registry by creating a new ConstraintRegistry
object.
-
class torch.distributions.constraint_registry.ConstraintRegistry
[source] -
Registry to link constraints to transforms.
-
register(constraint, factory=None)
[source] -
Registers a
Constraint
subclass in this registry. Usage:@my_registry.register(MyConstraintClass) def construct_transform(constraint): assert isinstance(constraint, MyConstraint) return MyTransform(constraint.arg_constraints)
- Parameters
-
-
constraint (subclass of
Constraint
) – A subclass ofConstraint
, or a singleton object of the desired class. -
factory (callable) – A callable that inputs a constraint object and returns a
Transform
object.
-
constraint (subclass of
-
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/distributions.html