torch.nn.utils.weight_norm
-
torch.nn.utils.weight_norm(module, name='weight', dim=0)
[source] -
Applies weight normalization to a parameter in the given module.
Weight normalization is a reparameterization that decouples the magnitude of a weight tensor from its direction. This replaces the parameter specified by
name
(e.g.'weight'
) with two parameters: one specifying the magnitude (e.g.'weight_g'
) and one specifying the direction (e.g.'weight_v'
). Weight normalization is implemented via a hook that recomputes the weight tensor from the magnitude and direction before everyforward()
call.By default, with
dim=0
, the norm is computed independently per output channel/plane. To compute a norm over the entire weight tensor, usedim=None
.See https://arxiv.org/abs/1602.07868
- Parameters
- Returns
-
The original module with the weight norm hook
Example:
>>> m = weight_norm(nn.Linear(20, 40), name='weight') >>> m Linear(in_features=20, out_features=40, bias=True) >>> m.weight_g.size() torch.Size([40, 1]) >>> m.weight_v.size() torch.Size([40, 20])
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.utils.weight_norm.html