Softplus
-
class torch.nn.Softplus(beta=1, threshold=20)
[source] -
Applies the element-wise function:
SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive.
For numerical stability the implementation reverts to the linear function when .
- Parameters
-
- beta – the value for the Softplus formulation. Default: 1
- threshold – values above this revert to a linear function. Default: 20
- Shape:
-
- Input: where
*
means, any number of additional dimensions - Output: , same shape as the input
- Input: where
Examples:
>>> m = nn.Softplus() >>> input = torch.randn(2) >>> output = m(input)
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.Softplus.html