torch.randperm
-
torch.randperm(n, *, generator=None, out=None, dtype=torch.int64, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) → Tensor
-
Returns a random permutation of integers from
0
ton - 1
.- Parameters
-
n (int) – the upper bound (exclusive)
- Keyword Arguments
-
-
generator (
torch.Generator
, optional) – a pseudorandom number generator for sampling - out (Tensor, optional) – the output tensor.
-
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default:torch.int64
. -
layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
. -
device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. -
requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
. -
pin_memory (bool, optional) – If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default:
False
.
-
generator (
Example:
>>> torch.randperm(4) tensor([2, 1, 0, 3])
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.randperm.html