torch.fake_quantize_per_channel_affine
-
torch.fake_quantize_per_channel_affine(input, scale, zero_point, quant_min, quant_max) → Tensor
-
Returns a new tensor with the data in
input
fake quantized per channel usingscale
,zero_point
,quant_min
andquant_max
, across the channel specified byaxis
.- Parameters
-
-
input (Tensor) – the input value(s), in
torch.float32
. - scale (Tensor) – quantization scale, per channel
- zero_point (Tensor) – quantization zero_point, per channel
- axis (int32) – channel axis
- quant_min (int64) – lower bound of the quantized domain
- quant_max (int64) – upper bound of the quantized domain
-
input (Tensor) – the input value(s), in
- Returns
-
A newly fake_quantized per channel tensor
- Return type
Example:
>>> x = torch.randn(2, 2, 2) >>> x tensor([[[-0.2525, -0.0466], [ 0.3491, -0.2168]], [[-0.5906, 1.6258], [ 0.6444, -0.0542]]]) >>> scales = (torch.randn(2) + 1) * 0.05 >>> scales tensor([0.0475, 0.0486]) >>> zero_points = torch.zeros(2).to(torch.long) >>> zero_points tensor([0, 0]) >>> torch.fake_quantize_per_channel_affine(x, scales, zero_points, 1, 0, 255) tensor([[[0.0000, 0.0000], [0.3405, 0.0000]], [[0.0000, 1.6134], [0.6323, 0.0000]]])
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.fake_quantize_per_channel_affine.html