torch.nn.utils.rnn.pad_sequence
-
torch.nn.utils.rnn.pad_sequence(sequences, batch_first=False, padding_value=0.0)
[source] -
Pad a list of variable length Tensors with
padding_value
pad_sequence
stacks a list of Tensors along a new dimension, and pads them to equal length. For example, if the input is list of sequences with sizeL x *
and if batch_first is False, andT x B x *
otherwise.B
is batch size. It is equal to the number of elements insequences
.T
is length of the longest sequence.L
is length of the sequence.*
is any number of trailing dimensions, including none.Example
>>> from torch.nn.utils.rnn import pad_sequence >>> a = torch.ones(25, 300) >>> b = torch.ones(22, 300) >>> c = torch.ones(15, 300) >>> pad_sequence([a, b, c]).size() torch.Size([25, 3, 300])
Note
This function returns a Tensor of size
T x B x *
orB x T x *
whereT
is the length of the longest sequence. This function assumes trailing dimensions and type of all the Tensors in sequences are same.- Parameters
- Returns
-
Tensor of size
T x B x *
ifbatch_first
isFalse
. Tensor of sizeB x T x *
otherwise
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.utils.rnn.pad_sequence.html