TransformerEncoder
-
class torch.nn.TransformerEncoder(encoder_layer, num_layers, norm=None)
[source] -
TransformerEncoder is a stack of N encoder layers
- Parameters
-
- encoder_layer – an instance of the TransformerEncoderLayer() class (required).
- num_layers – the number of sub-encoder-layers in the encoder (required).
- norm – the layer normalization component (optional).
- Examples::
-
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) >>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6) >>> src = torch.rand(10, 32, 512) >>> out = transformer_encoder(src)
-
forward(src, mask=None, src_key_padding_mask=None)
[source] -
Pass the input through the encoder layers in turn.
- Parameters
-
- src – the sequence to the encoder (required).
- mask – the mask for the src sequence (optional).
- src_key_padding_mask – the mask for the src keys per batch (optional).
- Shape:
-
see the docs in Transformer class.
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.TransformerEncoder.html