Bilinear

class torch.nn.Bilinear(in1_features, in2_features, out_features, bias=True) [source]

Applies a bilinear transformation to the incoming data: y=x1TAx2+by = x_1^T A x_2 + b

Parameters
  • in1_features – size of each first input sample
  • in2_features – size of each second input sample
  • out_features – size of each output sample
  • bias – If set to False, the layer will not learn an additive bias. Default: True
Shape:
  • Input1: (N,,Hin1)(N, *, H_{in1}) where Hin1=in1_featuresH_{in1}=\text{in1\_features} and * means any number of additional dimensions. All but the last dimension of the inputs should be the same.
  • Input2: (N,,Hin2)(N, *, H_{in2}) where Hin2=in2_featuresH_{in2}=\text{in2\_features} .
  • Output: (N,,Hout)(N, *, H_{out}) where Hout=out_featuresH_{out}=\text{out\_features} and all but the last dimension are the same shape as the input.
Variables
  • ~Bilinear.weight – the learnable weights of the module of shape (out_features,in1_features,in2_features)(\text{out\_features}, \text{in1\_features}, \text{in2\_features}) . The values are initialized from U(k,k)\mathcal{U}(-\sqrt{k}, \sqrt{k}) , where k=1in1_featuresk = \frac{1}{\text{in1\_features}}
  • ~Bilinear.bias – the learnable bias of the module of shape (out_features)(\text{out\_features}) . If bias is True, the values are initialized from U(k,k)\mathcal{U}(-\sqrt{k}, \sqrt{k}) , where k=1in1_featuresk = \frac{1}{\text{in1\_features}}

Examples:

>>> m = nn.Bilinear(20, 30, 40)
>>> input1 = torch.randn(128, 20)
>>> input2 = torch.randn(128, 30)
>>> output = m(input1, input2)
>>> print(output.size())
torch.Size([128, 40])

© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.Bilinear.html