torch.backends
torch.backends
controls the behavior of various backends that PyTorch supports.
These backends include:
torch.backends.cuda
torch.backends.cudnn
torch.backends.mkl
torch.backends.mkldnn
torch.backends.openmp
torch.backends.cuda
-
torch.backends.cuda.is_built()
[source] -
Returns whether PyTorch is built with CUDA support. Note that this doesn’t necessarily mean CUDA is available; just that if this PyTorch binary were run a machine with working CUDA drivers and devices, we would be able to use it.
-
torch.backends.cuda.matmul.allow_tf32
-
A
bool
that controls whether TensorFloat-32 tensor cores may be used in matrix multiplications on Ampere or newer GPUs. See TensorFloat-32(TF32) on Ampere devices.
-
torch.backends.cuda.cufft_plan_cache
-
cufft_plan_cache
caches the cuFFT plans-
size
-
A readonly
int
that shows the number of plans currently in the cuFFT plan cache.
-
max_size
-
A
int
that controls cache capacity of cuFFT plan.
-
clear()
-
Clears the cuFFT plan cache.
-
torch.backends.cudnn
-
torch.backends.cudnn.version()
[source] -
Returns the version of cuDNN
-
torch.backends.cudnn.is_available()
[source] -
Returns a bool indicating if CUDNN is currently available.
-
torch.backends.cudnn.enabled
-
A
bool
that controls whether cuDNN is enabled.
-
torch.backends.cudnn.allow_tf32
-
A
bool
that controls where TensorFloat-32 tensor cores may be used in cuDNN convolutions on Ampere or newer GPUs. See TensorFloat-32(TF32) on Ampere devices.
-
torch.backends.cudnn.deterministic
-
A
bool
that, if True, causes cuDNN to only use deterministic convolution algorithms. See alsotorch.are_deterministic_algorithms_enabled()
andtorch.use_deterministic_algorithms()
.
-
torch.backends.cudnn.benchmark
-
A
bool
that, if True, causes cuDNN to benchmark multiple convolution algorithms and select the fastest.
torch.backends.mkl
-
torch.backends.mkl.is_available()
[source] -
Returns whether PyTorch is built with MKL support.
torch.backends.mkldnn
-
torch.backends.mkldnn.is_available()
[source] -
Returns whether PyTorch is built with MKL-DNN support.
torch.backends.openmp
-
torch.backends.openmp.is_available()
[source] -
Returns whether PyTorch is built with OpenMP support.
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/backends.html