CosineSimilarity

class torch.nn.CosineSimilarity(dim=1, eps=1e-08) [source]

Returns cosine similarity between x1x_1 and x2x_2 , computed along dim.

similarity=x1x2max(x12x22,ϵ).\text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}.
Parameters
  • dim (int, optional) – Dimension where cosine similarity is computed. Default: 1
  • eps (float, optional) – Small value to avoid division by zero. Default: 1e-8
Shape:
  • Input1: (1,D,2)(\ast_1, D, \ast_2) where D is at position dim
  • Input2: (1,D,2)(\ast_1, D, \ast_2) , same shape as the Input1
  • Output: (1,2)(\ast_1, \ast_2)
Examples::
>>> input1 = torch.randn(100, 128)
>>> input2 = torch.randn(100, 128)
>>> cos = nn.CosineSimilarity(dim=1, eps=1e-6)
>>> output = cos(input1, input2)

© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.CosineSimilarity.html