torch.kaiser_window
- 
torch.kaiser_window(window_length, periodic=True, beta=12.0, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor - 
Computes the Kaiser window with window length
window_lengthand shape parameterbeta.Let I_0 be the zeroth order modified Bessel function of the first kind (see
torch.i0()) andN = L - 1ifperiodicis False andLifperiodicis True, whereLis thewindow_length. This function computes:Calling
torch.kaiser_window(L, B, periodic=True)is equivalent to callingtorch.kaiser_window(L + 1, B, periodic=False)[:-1]). Theperiodicargument is intended as a helpful shorthand to produce a periodic window as input to functions liketorch.stft().Note
If
window_lengthis one, then the returned window is a single element tensor containing a one.- Parameters
 - Keyword Arguments
 - 
- 
dtype (
torch.dtype, optional) – the desired data type of returned tensor. Default: ifNone, uses a global default (seetorch.set_default_tensor_type()). - 
layout (
torch.layout, optional) – the desired layout of returned window tensor. Onlytorch.strided(dense layout) is supported. - 
device (
torch.device, optional) – the desired device of returned tensor. Default: ifNone, uses the current device for the default tensor type (seetorch.set_default_tensor_type()).devicewill be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. - 
requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: 
False. 
 - 
dtype (
 
 
    © 2019 Torch Contributors
Licensed under the 3-clause BSD License.
    https://pytorch.org/docs/1.8.0/generated/torch.kaiser_window.html