BasePruningMethod
-
class torch.nn.utils.prune.BasePruningMethod
[source] -
Abstract base class for creation of new pruning techniques.
Provides a skeleton for customization requiring the overriding of methods such as
compute_mask()
andapply()
.-
classmethod apply(module, name, *args, importance_scores=None, **kwargs)
[source] -
Adds the forward pre-hook that enables pruning on the fly and the reparametrization of a tensor in terms of the original tensor and the pruning mask.
- Parameters
-
- module (nn.Module) – module containing the tensor to prune
-
name (str) – parameter name within
module
on which pruning will act. -
args – arguments passed on to a subclass of
BasePruningMethod
- importance_scores (torch.Tensor) – tensor of importance scores (of same shape as module parameter) used to compute mask for pruning. The values in this tensor indicate the importance of the corresponding elements in the parameter being pruned. If unspecified or None, the parameter will be used in its place.
-
kwargs – keyword arguments passed on to a subclass of a
BasePruningMethod
-
apply_mask(module)
[source] -
Simply handles the multiplication between the parameter being pruned and the generated mask. Fetches the mask and the original tensor from the module and returns the pruned version of the tensor.
- Parameters
-
module (nn.Module) – module containing the tensor to prune
- Returns
-
pruned version of the input tensor
- Return type
-
pruned_tensor (torch.Tensor)
-
abstract compute_mask(t, default_mask)
[source] -
Computes and returns a mask for the input tensor
t
. Starting from a basedefault_mask
(which should be a mask of ones if the tensor has not been pruned yet), generate a random mask to apply on top of thedefault_mask
according to the specific pruning method recipe.- Parameters
-
- t (torch.Tensor) – tensor representing the importance scores of the
- to prune. (parameter) –
- default_mask (torch.Tensor) – Base mask from previous pruning
- that need to be respected after the new mask is (iterations,) –
- Same dims as t. (applied.) –
- Returns
-
mask to apply to
t
, of same dims ast
- Return type
-
mask (torch.Tensor)
-
prune(t, default_mask=None, importance_scores=None)
[source] -
Computes and returns a pruned version of input tensor
t
according to the pruning rule specified incompute_mask()
.- Parameters
-
-
t (torch.Tensor) – tensor to prune (of same dimensions as
default_mask
). -
importance_scores (torch.Tensor) – tensor of importance scores (of same shape as
t
) used to compute mask for pruningt
. The values in this tensor indicate the importance of the corresponding elements in thet
that is being pruned. If unspecified or None, the tensort
will be used in its place. - default_mask (torch.Tensor, optional) – mask from previous pruning iteration, if any. To be considered when determining what portion of the tensor that pruning should act on. If None, default to a mask of ones.
-
t (torch.Tensor) – tensor to prune (of same dimensions as
- Returns
-
pruned version of tensor
t
.
-
remove(module)
[source] -
Removes the pruning reparameterization from a module. The pruned parameter named
name
remains permanently pruned, and the parameter namedname+'_orig'
is removed from the parameter list. Similarly, the buffer namedname+'_mask'
is removed from the buffers.Note
Pruning itself is NOT undone or reversed!
-
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.utils.prune.BasePruningMethod.html