LazyConv2d
-
class torch.nn.LazyConv2d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
[source] -
A
torch.nn.Conv2d
module with lazy initialization of thein_channels
argument of theConv2d
that is inferred from theinput.size(1)
.- Parameters
-
- out_channels (int) – Number of channels produced by the convolution
- kernel_size (int or tuple) – Size of the convolving kernel
- stride (int or tuple, optional) – Stride of the convolution. Default: 1
- padding (int or tuple, optional) – Zero-padding added to both sides of the input. Default: 0
-
padding_mode (string, optional) –
'zeros'
,'reflect'
,'replicate'
or'circular'
. Default:'zeros'
- dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
- groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
-
bias (bool, optional) – If
True
, adds a learnable bias to the output. Default:True
See also
-
cls_to_become
-
alias of
Conv2d
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.LazyConv2d.html