LazyConv2d

class torch.nn.LazyConv2d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros') [source]

A torch.nn.Conv2d module with lazy initialization of the in_channels argument of the Conv2d that is inferred from the input.size(1).

Parameters
  • out_channels (int) – Number of channels produced by the convolution
  • kernel_size (int or tuple) – Size of the convolving kernel
  • stride (int or tuple, optional) – Stride of the convolution. Default: 1
  • padding (int or tuple, optional) – Zero-padding added to both sides of the input. Default: 0
  • padding_mode (string, optional) – 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'
  • dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
  • groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True
cls_to_become

alias of Conv2d

© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.LazyConv2d.html