Reading and writing files
This page tackles common applications; for the full collection of I/O routines, see Input and output.
Reading text and CSV files
With no missing values
Use numpy.loadtxt
.
With missing values
Use numpy.genfromtxt
.
numpy.genfromtxt
will either
- return a masked array masking out missing values (if
usemask=True
), or -
fill in the missing value with the value specified in
filling_values
(default isnp.nan
for float, -1 for int).
With non-whitespace delimiters
>>> print(open("csv.txt").read()) 1, 2, 3 4,, 6 7, 8, 9
Masked-array output
>>> np.genfromtxt("csv.txt", delimiter=",", usemask=True) masked_array( data=[[1.0, 2.0, 3.0], [4.0, --, 6.0], [7.0, 8.0, 9.0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1e+20)
Array output
>>> np.genfromtxt("csv.txt", delimiter=",") array([[ 1., 2., 3.], [ 4., nan, 6.], [ 7., 8., 9.]])
Array output, specified fill-in value
>>> np.genfromtxt("csv.txt", delimiter=",", dtype=np.int8, filling_values=99) array([[ 1, 2, 3], [ 4, 99, 6], [ 7, 8, 9]], dtype=int8)
Whitespace-delimited
numpy.genfromtxt
can also parse whitespace-delimited data files that have missing values if
-
Each field has a fixed width: Use the width as the
delimiter
argument.# File with width=4. The data does not have to be justified (for example, # the 2 in row 1), the last column can be less than width (for example, the 6 # in row 2), and no delimiting character is required (for instance 8888 and 9 # in row 3) >>> f = open("fixedwidth.txt").read() # doctest: +SKIP >>> print(f) # doctest: +SKIP 1 2 3 44 6 7 88889 # Showing spaces as ^ >>> print(f.replace(" ","^")) # doctest: +SKIP 1^^^2^^^^^^3 44^^^^^^6 7^^^88889 >>> np.genfromtxt("fixedwidth.txt", delimiter=4) # doctest: +SKIP array([[1.000e+00, 2.000e+00, 3.000e+00], [4.400e+01, nan, 6.000e+00], [7.000e+00, 8.888e+03, 9.000e+00]])
-
A special value (e.g. “x”) indicates a missing field: Use it as the
missing_values
argument.>>> print(open("nan.txt").read()) 1 2 3 44 x 6 7 8888 9 >>> np.genfromtxt("nan.txt", missing_values="x") array([[1.000e+00, 2.000e+00, 3.000e+00], [4.400e+01, nan, 6.000e+00], [7.000e+00, 8.888e+03, 9.000e+00]])
-
You want to skip the rows with missing values: Set
invalid_raise=False
.>>> print(open("skip.txt").read()) 1 2 3 44 6 7 888 9 >>> np.genfromtxt("skip.txt", invalid_raise=False) __main__:1: ConversionWarning: Some errors were detected ! Line #2 (got 2 columns instead of 3) array([[ 1., 2., 3.], [ 7., 888., 9.]])
-
The delimiter whitespace character is different from the whitespace that indicates missing data. For instance, if columns are delimited by
\t
, then missing data will be recognized if it consists of one or more spaces.>>> f = open("tabs.txt").read() >>> print(f) 1 2 3 44 6 7 888 9 # Tabs vs. spaces >>> print(f.replace("\t","^")) 1^2^3 44^ ^6 7^888^9 >>> np.genfromtxt("tabs.txt", delimiter="\t", missing_values=" +") array([[ 1., 2., 3.], [ 44., nan, 6.], [ 7., 888., 9.]])
Read a file in .npy or .npz format
Choices:
- Use
numpy.load
. It can read files generated by any ofnumpy.save
,numpy.savez
, ornumpy.savez_compressed
. - Use memory mapping. See
numpy.lib.format.open_memmap
.
Write to a file to be read back by NumPy
Binary
Use numpy.save
, or to store multiple arrays numpy.savez
or numpy.savez_compressed
.
For security and portability, set allow_pickle=False
unless the dtype contains Python objects, which requires pickling.
Masked arrays can't currently be saved
, nor can other arbitrary array subclasses.
Human-readable
numpy.save
and numpy.savez
create binary files. To write a human-readable file, use numpy.savetxt
. The array can only be 1- or 2-dimensional, and there’s no ` savetxtz` for multiple files.
Large arrays
See Write or read large arrays.
Read an arbitrarily formatted binary file (“binary blob”)
Use a structured array.
Example:
The .wav
file header is a 44-byte block preceding data_size
bytes of the actual sound data:
chunk_id "RIFF" chunk_size 4-byte unsigned little-endian integer format "WAVE" fmt_id "fmt " fmt_size 4-byte unsigned little-endian integer audio_fmt 2-byte unsigned little-endian integer num_channels 2-byte unsigned little-endian integer sample_rate 4-byte unsigned little-endian integer byte_rate 4-byte unsigned little-endian integer block_align 2-byte unsigned little-endian integer bits_per_sample 2-byte unsigned little-endian integer data_id "data" data_size 4-byte unsigned little-endian integer
The .wav
file header as a NumPy structured dtype:
wav_header_dtype = np.dtype([ ("chunk_id", (bytes, 4)), # flexible-sized scalar type, item size 4 ("chunk_size", "<u4"), # little-endian unsigned 32-bit integer ("format", "S4"), # 4-byte string, alternate spelling of (bytes, 4) ("fmt_id", "S4"), ("fmt_size", "<u4"), ("audio_fmt", "<u2"), # ("num_channels", "<u2"), # .. more of the same ... ("sample_rate", "<u4"), # ("byte_rate", "<u4"), ("block_align", "<u2"), ("bits_per_sample", "<u2"), ("data_id", "S4"), ("data_size", "<u4"), # # the sound data itself cannot be represented here: # it does not have a fixed size ]) header = np.fromfile(f, dtype=wave_header_dtype, count=1)[0]
This .wav
example is for illustration; to read a .wav
file in real life, use Python’s built-in module wave
.
(Adapted from Pauli Virtanen, Advanced NumPy, licensed under CC BY 4.0.)
Write or read large arrays
Arrays too large to fit in memory can be treated like ordinary in-memory arrays using memory mapping.
-
Raw array data written with
numpy.ndarray.tofile
ornumpy.ndarray.tobytes
can be read withnumpy.memmap
:array = numpy.memmap("mydata/myarray.arr", mode="r", dtype=np.int16, shape=(1024, 1024))
-
Files output by
numpy.save
(that is, using the numpy format) can be read usingnumpy.load
with themmap_mode
keyword argument:large_array[some_slice] = np.load("path/to/small_array", mmap_mode="r")
Memory mapping lacks features like data chunking and compression; more full-featured formats and libraries usable with NumPy include:
- HDF5: h5py or PyTables.
- Zarr: here.
-
NetCDF:
scipy.io.netcdf_file
.
For tradeoffs among memmap, Zarr, and HDF5, see pythonspeed.com.
Write files for reading by other (non-NumPy) tools
Formats for exchanging data with other tools include HDF5, Zarr, and NetCDF (see Write or read large arrays).
Write or read a JSON file
NumPy arrays are not directly JSON serializable.
Save/restore using a pickle file
Avoid when possible; pickles are not secure against erroneous or maliciously constructed data.
Use numpy.save
and numpy.load
. Set allow_pickle=False
, unless the array dtype includes Python objects, in which case pickling is required.
Convert from a pandas DataFrame to a NumPy array
See pandas.DataFrame.to_numpy
.
Save/restore using tofile and fromfile
In general, prefer numpy.save
and numpy.load
.
numpy.ndarray.tofile
and numpy.fromfile
lose information on endianness and precision and so are unsuitable for anything but scratch storage.
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/user/how-to-io.html