numpy.ma.masked_object
-
ma.masked_object(x, value, copy=True, shrink=True)
[source] -
Mask the array
x
where the data are exactly equal to value.This function is similar to
masked_values
, but only suitable for object arrays: for floating point, usemasked_values
instead.- Parameters
-
-
xarray_like
-
Array to mask
-
valueobject
-
Comparison value
-
copy{True, False}, optional
-
Whether to return a copy of
x
. -
shrink{True, False}, optional
-
Whether to collapse a mask full of False to nomask
-
- Returns
-
-
resultMaskedArray
-
The result of masking
x
where equal tovalue
.
-
See also
-
masked_where
-
Mask where a condition is met.
-
masked_equal
-
Mask where equal to a given value (integers).
-
masked_values
-
Mask using floating point equality.
Examples
>>> import numpy.ma as ma >>> food = np.array(['green_eggs', 'ham'], dtype=object) >>> # don't eat spoiled food >>> eat = ma.masked_object(food, 'green_eggs') >>> eat masked_array(data=[--, 'ham'], mask=[ True, False], fill_value='green_eggs', dtype=object) >>> # plain ol` ham is boring >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) >>> eat = ma.masked_object(fresh_food, 'green_eggs') >>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object)
Note that
mask
is set tonomask
if possible.>>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object)
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.ma.masked_object.html