numpy.linspace
-
numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)
[source] -
Return evenly spaced numbers over a specified interval.
Returns
num
evenly spaced samples, calculated over the interval [start
,stop
].The endpoint of the interval can optionally be excluded.
Changed in version 1.16.0: Non-scalar
start
andstop
are now supported.Changed in version 1.20.0: Values are rounded towards
-inf
instead of0
when an integerdtype
is specified. The old behavior can still be obtained withnp.linspace(start, stop, num).astype(int)
- Parameters
-
-
startarray_like
-
The starting value of the sequence.
-
stoparray_like
-
The end value of the sequence, unless
endpoint
is set to False. In that case, the sequence consists of all but the last ofnum + 1
evenly spaced samples, so thatstop
is excluded. Note that the step size changes whenendpoint
is False. -
numint, optional
-
Number of samples to generate. Default is 50. Must be non-negative.
-
endpointbool, optional
-
If True,
stop
is the last sample. Otherwise, it is not included. Default is True. -
retstepbool, optional
-
If True, return (
samples
,step
), wherestep
is the spacing between samples. -
dtypedtype, optional
-
The type of the output array. If
dtype
is not given, the data type is inferred fromstart
andstop
. The inferred dtype will never be an integer;float
is chosen even if the arguments would produce an array of integers.New in version 1.9.0.
-
axisint, optional
-
The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end.
New in version 1.16.0.
-
- Returns
-
-
samplesndarray
-
There are
num
equally spaced samples in the closed interval[start, stop]
or the half-open interval[start, stop)
(depending on whetherendpoint
is True or False). -
stepfloat, optional
-
Only returned if
retstep
is TrueSize of spacing between samples.
-
See also
Examples
>>> np.linspace(2.0, 3.0, num=5) array([2. , 2.25, 2.5 , 2.75, 3. ]) >>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([2. , 2.2, 2.4, 2.6, 2.8]) >>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
Graphical illustration:
>>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) >>> x1 = np.linspace(0, 10, N, endpoint=True) >>> x2 = np.linspace(0, 10, N, endpoint=False) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show()
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.linspace.html