numpy.float_power
-
numpy.float_power(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'float_power'>
-
First array elements raised to powers from second array, element-wise.
Raise each base in
x1
to the positionally-corresponding power inx2
.x1
andx2
must be broadcastable to the same shape. This differs from the power function in that integers, float16, and float32 are promoted to floats with a minimum precision of float64 so that the result is always inexact. The intent is that the function will return a usable result for negative powers and seldom overflow for positive powers.New in version 1.12.0.
- Parameters
-
-
x1array_like
-
The bases.
-
x2array_like
-
The exponents. If
x1.shape != x2.shape
, they must be broadcastable to a common shape (which becomes the shape of the output). -
outndarray, None, or tuple of ndarray and None, optional
-
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
-
wherearray_like, optional
-
This condition is broadcast over the input. At locations where the condition is True, the
out
array will be set to the ufunc result. Elsewhere, theout
array will retain its original value. Note that if an uninitializedout
array is created via the defaultout=None
, locations within it where the condition is False will remain uninitialized. - **kwargs
-
For other keyword-only arguments, see the ufunc docs.
-
- Returns
-
-
yndarray
-
The bases in
x1
raised to the exponents inx2
. This is a scalar if bothx1
andx2
are scalars.
-
See also
-
power
-
power function that preserves type
Examples
Cube each element in a list.
>>> x1 = range(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.float_power(x1, 3) array([ 0., 1., 8., 27., 64., 125.])
Raise the bases to different exponents.
>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.float_power(x1, x2) array([ 0., 1., 8., 27., 16., 5.])
The effect of broadcasting.
>>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> np.float_power(x1, x2) array([[ 0., 1., 8., 27., 16., 5.], [ 0., 1., 8., 27., 16., 5.]])
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.21/reference/generated/numpy.float_power.html